| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 
 | function [fh,xh,gh,H,itct,fcount,retcodeh] = csminwel(fcn,x0,H0,grad,crit,nit,varargin)
%[fhat,xhat,ghat,Hhat,itct,fcount,retcodehat] = csminwel(fcn,x0,H0,grad,crit,nit,varargin)
% fcn:   string naming the objective function to be minimized
% x0:    initial value of the parameter vector
% H0:    initial value for the inverse Hessian.  Must be positive definite.
% grad:  Either a string naming a function that calculates the gradient, or the null matrix.
%        If it's null, the program calculates a numerical gradient.  In this case fcn must
%        be written so that it can take a matrix argument and produce a row vector of values.
% crit:  Convergence criterion.  Iteration will cease when it proves impossible to improve the
%        function value by more than crit.
% nit:   Maximum number of iterations.
% varargin: A list of optional length of additional parameters that get handed off to fcn each
%        time it is called.
%        Note that if the program ends abnormally, it is possible to retrieve the current x,
%        f, and H from the files g1.mat and H.mat that are written at each iteration and at each
%        hessian update, respectively.  (When the routine hits certain kinds of difficulty, it
%        write g2.mat and g3.mat as well.  If all were written at about the same time, any of them
%        may be a decent starting point.  One can also start from the one with best function value.)
% NOTE:  The display on screen can be turned off by seeting dispIndx=0 in this
%         function.  This option is used for the loop operation.  T. Zha, 2 May 2000
% NOTE:  You may want to change stps to 1.0e-02 or 1.0e-03 to get a better convergence.  August, 2006
%
% Copyright (C) 1997-2012 Christopher A. Sims and Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%
Verbose = 1;  % 1: turn on all the diplays on the screen; 0: turn off (Added by T. Zha)
dispIndx = 1;   % 1: turn on all the diplays on the screen; 0: turn off (Added by T. Zha)
[nx,no]=size(x0);
nx=max(nx,no);
NumGrad= ( ~isstr(grad) | length(grad)==0);
done=0;
itct=0;
fcount=0;
snit=100;
%tailstr = ')';
%stailstr = [];
% Lines below make the number of Pi's optional.  This is inefficient, though, and precludes
% use of the matlab compiler.  Without them, we use feval and the number of Pi's must be
% changed with the editor for each application.  Places where this is required are marked
% with ARGLIST comments
%for i=nargin-6:-1:1
%   tailstr=[ ',P' num2str(i)  tailstr];
%   stailstr=[' P' num2str(i) stailstr];
%end
if ischar(fcn)
	f0 = eval([fcn '(x0,varargin{:})']);
else
	f0 = fcn(x0,varargin{:});
end
%ARGLIST
%f0 = feval(fcn,x0,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13);
% disp('first fcn in csminwel.m ----------------') % Jinill on 9/5/95
if f0 > 1e50, disp('Bad initial parameter.'), return, end
if NumGrad
   if length(grad)==0
      [g badg] = numgradcd(fcn,x0, varargin{:});
      %ARGLIST
      %[g badg] = numgradcd(fcn,x0,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13);
   else
      badg=any(find(grad==0));
      g=grad;
   end
   %numgradcd(fcn,x0,P1,P2,P3,P4);
else
   [g badg] = eval([grad '(x0,varargin{:})']);
   %ARGLIST
   %[g badg] = feval(grad,x0,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13);
end
retcode3=101;
x=x0;
f=f0;
H=H0;
cliff=0;
while ~done
   g1=[]; g2=[]; g3=[];
   %addition fj. 7/6/94 for control
   if dispIndx
      disp('-----------------')
      disp('-----------------')
      %disp('f and x at the beginning of new iteration')
      disp(sprintf('f at the beginning of new iteration, %20.10f',f))
      %-----------Comment out this line if the x vector is long----------------
      disp([sprintf('x = ') sprintf('%15.8g%15.8g%15.8g%15.8g%15.8g\n',x)]);
   end
   %-------------------------
   itct=itct+1;
   [f1 x1 fc retcode1] = csminit(fcn,x,f,g,badg,H,varargin{:});
   %ARGLIST
   %[f1 x1 fc retcode1] = csminit(fcn,x,f,g,badg,H,P1,P2,P3,P4,P5,P6,P7,...
   %           P8,P9,P10,P11,P12,P13);
   % itct=itct+1;
   fcount = fcount+fc;
   % erased on 8/4/94
   % if (retcode == 1) | (abs(f1-f) < crit)
   %    done=1;
   % end
   % if itct > nit
   %    done = 1;
   %    retcode = -retcode;
   % end
   if retcode1 ~= 1
      if retcode1==2 | retcode1==4
         wall1=1; badg1=1;
      else
         if NumGrad
            [g1 badg1] = numgradcd(fcn, x1,varargin{:});
            %ARGLIST
            %[g1 badg1] = numgradcd(fcn, x1,P1,P2,P3,P4,P5,P6,P7,P8,P9,...
            %                P10,P11,P12,P13);
         else
            [g1 badg1] = eval([grad '(x1,varargin{:})']);
            %ARGLIST
            %[g1 badg1] = feval(grad, x1,P1,P2,P3,P4,P5,P6,P7,P8,P9,...
            %                P10,P11,P12,P13);
         end
         wall1=badg1;
         % g1
         save g1 g1 x1 f1 varargin;
         %ARGLIST
         %save g1 g1 x1 f1 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13;
      end
      if wall1 % & (~done) by Jinill
         % Bad gradient or back and forth on step length.  Possibly at
         % cliff edge.  Try perturbing search direction.
         %
         %fcliff=fh;xcliff=xh;
         if dispIndx
            disp(' ')
            disp('************************* Random search. *****************************************')
            disp('************************* Random search. *****************************************')
            disp(' ')
            pause(1.0)
         end
         Hcliff=H+diag(diag(H).*rand(nx,1));
         if dispIndx, disp('Cliff.  Perturbing search direction.'), end
         [f2 x2 fc retcode2] = csminit(fcn,x,f,g,badg,Hcliff,varargin{:});
         %ARGLIST
         %[f2 x2 fc retcode2] = csminit(fcn,x,f,g,badg,Hcliff,P1,P2,P3,P4,...
         %     P5,P6,P7,P8,P9,P10,P11,P12,P13);
         fcount = fcount+fc; % put by Jinill
         if  f2 < f
            if retcode2==2 | retcode2==4
                  wall2=1; badg2=1;
            else
               if NumGrad
                  [g2 badg2] = numgradcd(fcn, x2,varargin{:});
                  %ARGLIST
                  %[g2 badg2] = numgradcd(fcn, x2,P1,P2,P3,P4,P5,P6,P7,P8,...
                  %      P9,P10,P11,P12,P13);
               else
                  [g2 badg2] = eval([grad '(x2,varargin{:})']);
                  %ARGLIST
                  %[g2 badg2] = feval(grad,x2,P1,P2,P3,P4,P5,P6,P7,P8,...
                  %      P9,P10,P11,P12,P13);
               end
               wall2=badg2;
               % g2
               if dispIndx, badg2, end
               save g2 g2 x2 f2 varargin
               %ARGLIST
               %save g2 g2 x2 f2 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13;
            end
            if wall2
               if dispIndx, disp('Cliff again.  Try traversing'), end
               if norm(x2-x1) < 1e-13
                  f3=f; x3=x; badg3=1;retcode3=101;
               else
                  gcliff=((f2-f1)/((norm(x2-x1))^2))*(x2-x1);
                  if(size(x0,2)>1), gcliff=gcliff', end
                  [f3 x3 fc retcode3] = csminit(fcn,x,f,gcliff,0,eye(nx),varargin{:});
                  %ARGLIST
                  %[f3 x3 fc retcode3] = csminit(fcn,x,f,gcliff,0,eye(nx),P1,P2,P3,...
                  %         P4,P5,P6,P7,P8,...
                  %      P9,P10,P11,P12,P13);
                  fcount = fcount+fc; % put by Jinill
                  if retcode3==2 | retcode3==4
                     wall3=1; badg3=1;
                  else
                     if NumGrad
                        [g3 badg3] = numgradcd(fcn, x3,varargin{:});
                        %ARGLIST
                        %[g3 badg3] = numgradcd(fcn, x3,P1,P2,P3,P4,P5,P6,P7,P8,...
                        %                        P9,P10,P11,P12,P13);
                     else
                        [g3 badg3] = eval([grad '(x3,varargin{:})']);
                        %ARGLIST
                        %[g3 badg3] = feval(grad,x3,P1,P2,P3,P4,P5,P6,P7,P8,...
                        %                         P9,P10,P11,P12,P13);
                     end
                     wall3=badg3;
                     % g3
                     if dispIndx, badg3, end
                     save g3 g3 x3 f3 varargin;
                     %ARGLIST
                     %save g3 g3 x3 f3 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13;
                  end
               end
            else
               f3=f; x3=x; badg3=1; retcode3=101;
            end
         else
            f3=f; x3=x; badg3=1;retcode3=101;
         end
      else
         % normal iteration, no walls, or else we're finished here.
         f2=f; f3=f; badg2=1; badg3=1; retcode2=101; retcode3=101;
      end
   else
      f1=f; f2=f; f3=f; retcode2=retcode1; retcode3=retcode1;
   end
   %how to pick gh and xh
   if f3<f & badg3==0
      if dispIndx, ih=3, end
      fh=f3;xh=x3;gh=g3;badgh=badg3;retcodeh=retcode3;
   elseif f2<f & badg2==0
      if dispIndx, ih=2, end
      fh=f2;xh=x2;gh=g2;badgh=badg2;retcodeh=retcode2;
   elseif f1<f & badg1==0
      if dispIndx, ih=1, end
      fh=f1;xh=x1;gh=g1;badgh=badg1;retcodeh=retcode1;
   else
      [fh,ih] = min([f1,f2,f3]);
      if dispIndx, disp(sprintf('ih = %d',ih)), end
      %eval(['xh=x' num2str(ih) ';'])
      switch ih
         case 1
            xh=x1;
         case 2
            xh=x2;
         case 3
            xh=x3;
      end %case
      %eval(['gh=g' num2str(ih) ';'])
      %eval(['retcodeh=retcode' num2str(ih) ';'])
      retcodei=[retcode1,retcode2,retcode3];
      retcodeh=retcodei(ih);
      if exist('gh')
         nogh=isempty(gh);
      else
         nogh=1;
      end
      if nogh
         if NumGrad
            [gh badgh] = numgradcd(fcn, xh,varargin{:});  %Pointed out by Junior Maih.
            %[gh badgh] = feval('numgrad',fcn,xh,varargin{:});
         else
            [gh badgh] = numgradcd(fcn, xh,varargin{:});  %Pointed out by Junior Maih.
            %[gh badgh] = feval('grad', xh,varargin{:});
         end
      end
      badgh=1;
   end
   %end of picking
   %ih
   %fh
   %xh
   %gh
   %badgh
   stuck = (abs(fh-f) < crit);
   if (~badg)&(~badgh)&(~stuck)
      H = bfgsi(H,gh-g,xh-x);
   end
   if Verbose
      if dispIndx
         disp('----')
         disp(sprintf('Improvement on iteration %d = %18.9f',itct,f-fh))
      end
   end
   if itct > nit
      if dispIndx, disp('iteration count termination'), end
      done = 1;
   elseif stuck
      if dispIndx, disp('improvement < crit termination'), end
      done = 1;
   end
   rc=retcodeh;
   if rc == 1
      if dispIndx, disp('zero gradient'), end
   elseif rc == 6
      if dispIndx, disp('smallest step still improving too slow, reversed gradient'), end
   elseif rc == 5
      if dispIndx, disp('largest step still improving too fast'), end
   elseif (rc == 4) | (rc==2)
      if dispIndx, disp('back and forth on step length never finished'), end
   elseif rc == 3
      if dispIndx, disp('smallest step still improving too slow'), end
   elseif rc == 7
      if dispIndx, disp('warning: possible inaccuracy in H matrix'), end
   end
   f=fh;
   x=xh;
   g=gh;
   badg=badgh;
end
% what about making an m-file of 10 lines including numgrad.m
% since it appears three times in csminwel.m
 |