| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 
 | function [A,B,Q,Z] = qzdivct(stake,A,B,Q,Z)
%function [A,B,Q,Z] = qzdivct(stake,A,B,Q,Z)
%
% Takes U.T. matrices A, B, orthonormal matrices Q,Z, rearranges them
% so that all cases of real(B(i,i)/A(i,i))>stake are in lower right
% corner, while preserving U.T. and orthonormal properties and Q'AZ' and
% Q'BZ'.  abs(A(i,i))<1e-11 is interpreted as a zero and as generating
% an infinitely positive real part of the ratio.  All i's for which this
% criterion are satisfied are grouped together in the lower right corner
% of the lower right corner, with the non-zero roots above them.  This
% version differs from
% qzdiv in that it works on the real part's value, as is appropriate for
% continuous time models, instead of on the absolute value, as is
% appropriate for discrete time models.
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%
realsmall=sqrt(eps)*10;
%realsmall=1e-3;
[n jnk] = size(A);
root = [diag(A) diag(B)];
% first sort on the non-zero root criterion
xdown0 = abs(root(:,1))<realsmall;
xdown = (xdown0 | (real(root(:,2)./(xdown0+root(:,1))) > stake));
for i = n:-1:1
   m=0;
   for j=i:-1:1
      if xdown0(j)
         m=j;
         break
      end
   end
   if (m==0)
      break
   end
   for k=m:1:i-1
      [A B Q Z] = qzswitch(k,A,B,Q,Z);
		root=[diag(A) diag(B)];
		xdown0(k:k+1)=flipud(xdown0(k:k+1));
		xdown(k:k+1)=flipud(xdown(k:k+1));
		if any(xdown(k:k+1)~=(xdown0(k:k+1) | (real(root(k:k+1,2)./(xdown0(k:k+1)+root(k:k+1,1)))) > stake))
			disp('xdown shift during 0 pack at i,k:')
			disp([i k])
		end
   end
end
% now repeat, using the stake criterion
for i = n:-1:1
   m=0;
   for j=i:-1:1
      if xdown(j)
         m=j;
         break
      end
   end
   if (m==0)
      return
   end
   for k=m:1:i-1
		gevOld=root(k:k+1,:);
		[A B Q Z] = qzswitch(k,A,B,Q,Z);
		root=[diag(A) diag(B)];
		xdown0(k:k+1)=flipud(xdown0(k:k+1));
		xdown(k:k+1)=flipud(xdown(k:k+1));
		if any(xdown(k:k+1)~=(xdown0(k:k+1) | (real(root(k:k+1,2)./(xdown0(k:k+1)+root(k:k+1,1)))) > stake))
			disp('xdown shift during pos pack at i,k:')
			disp([i k])
			gev=root(k:k+1,:);
			[gevOld gevOld(:,1).\gevOld(:,2);gev gev(:,1).\gev(:,2)]
		end
   end
end
 |