1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
function b = admissible(o, d)
% Return true iff d is an admissible draw in a distribution characterized by o.
%
% INPUTS
% - o [dprior] Distribution specification for a n×1 vector of independent continuous random variables
% - d [double] n×1 vector.
%
% OUTPUTS
% - b [logical] scalar.
%
% REMARKS
% None.
%
% EXAMPLE
%
% >> Prior = dprior(bayestopt_, options_.prior_trunc);
% >> d = Prior.draw()
% >> Prior.admissible(d)
% ans =
%
% logical
%
% 1
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
b = false;
if ~isequal(length(d), length(o.lb))
return
end
if all(d>=o.lb & d<=o.ub)
b = true;
end
return % --*-- Unit tests --*--
%@test:1
% Fill global structures with required fields...
prior_trunc = 1e-10;
p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
p1 = .4*ones(14,1); % Prior mean
p2 = .2*ones(14,1); % Prior std.
p3 = NaN(14,1);
p4 = NaN(14,1);
p5 = NaN(14,1);
p6 = NaN(14,1);
p7 = NaN(14,1);
for i=1:14
switch p0(i)
case 1
% Beta distribution
p3(i) = 0;
p4(i) = 1;
[p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
case 2
% Gamma distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
case 3
% Normal distribution
p3(i) = -Inf;
p4(i) = Inf;
p6(i) = p1(i);
p7(i) = p2(i);
p5(i) = p1(i);
case 4
% Inverse Gamma (type I) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
case 5
% Uniform distribution
[p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
p3(i) = p6(i);
p4(i) = p7(i);
p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
case 6
% Inverse Gamma (type II) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
case 8
% Weibull distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
otherwise
error('This density is not implemented!')
end
end
BayesInfo.pshape = p0;
BayesInfo.p1 = p1;
BayesInfo.p2 = p2;
BayesInfo.p3 = p3;
BayesInfo.p4 = p4;
BayesInfo.p5 = p5;
BayesInfo.p6 = p6;
BayesInfo.p7 = p7;
ndraws = 10;
% Call the tested routine
try
% Instantiate dprior object
o = dprior(BayesInfo, prior_trunc, false);
% Do simulations in a loop and estimate recursively the mean and the variance.
for i = 1:ndraws
draw = o.draw();
if ~o.admissible(draw)
error('problem in admissible')
end
end
t(1) = true;
catch
t(1) = false;
end
T = all(t);
%@eof:1
|