File: admissible.m

package info (click to toggle)
dynare 6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 67,632 kB
  • sloc: cpp: 79,090; ansic: 28,916; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,121; python: 634; makefile: 626; lisp: 163; xml: 18
file content (146 lines) | stat: -rw-r--r-- 3,818 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
function b = admissible(o, d)

% Return true iff d is an admissible draw in a distribution characterized by o.
%
% INPUTS
% - o      [dprior]   Distribution specification for a n×1 vector of independent continuous random variables
% - d      [double]   n×1 vector.
%
% OUTPUTS
% - b      [logical]  scalar.
%
% REMARKS
% None.
%
% EXAMPLE
%
% >> Prior = dprior(bayestopt_, options_.prior_trunc);
% >> d = Prior.draw()
% >> Prior.admissible(d)
%    ans =
%
%   logical
%
%   1

% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

b = false;

if ~isequal(length(d), length(o.lb))
    return
end

if all(d>=o.lb & d<=o.ub)
    b = true;
end

return % --*-- Unit tests --*--

%@test:1
% Fill global structures with required fields...
prior_trunc = 1e-10;
p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1);    % Prior shape
p1 = .4*ones(14,1);                          % Prior mean
p2 = .2*ones(14,1);                          % Prior std.
p3 = NaN(14,1);
p4 = NaN(14,1);
p5 = NaN(14,1);
p6 = NaN(14,1);
p7 = NaN(14,1);

for i=1:14
    switch p0(i)
      case 1
        % Beta distribution
        p3(i) = 0;
        p4(i) = 1;
        [p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
        p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
      case 2
        % Gamma distribution
        p3(i) = 0;
        p4(i) = Inf;
        [p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
        p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
      case 3
        % Normal distribution
        p3(i) = -Inf;
        p4(i) = Inf;
        p6(i) = p1(i);
        p7(i) = p2(i);
        p5(i) = p1(i);
      case 4
        % Inverse Gamma (type I) distribution
        p3(i) = 0;
        p4(i) = Inf;
        [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
        p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
      case 5
        % Uniform distribution
        [p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
        p3(i) = p6(i);
        p4(i) = p7(i);
        p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
      case 6
        % Inverse Gamma (type II) distribution
        p3(i) = 0;
        p4(i) = Inf;
        [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
        p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
      case 8
        % Weibull distribution
        p3(i) = 0;
        p4(i) = Inf;
        [p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
        p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
      otherwise
        error('This density is not implemented!')
    end
end

BayesInfo.pshape = p0;
BayesInfo.p1 = p1;
BayesInfo.p2 = p2;
BayesInfo.p3 = p3;
BayesInfo.p4 = p4;
BayesInfo.p5 = p5;
BayesInfo.p6 = p6;
BayesInfo.p7 = p7;

ndraws = 10;

% Call the tested routine
try
    % Instantiate dprior object
    o = dprior(BayesInfo, prior_trunc, false);
    % Do simulations in a loop and estimate recursively the mean and the variance.
    for i = 1:ndraws
        draw = o.draw();
        if ~o.admissible(draw)
            error('problem in admissible')
        end
    end
    t(1) = true;
catch
    t(1) = false;
end

T = all(t);

%@eof:1