File: density.m

package info (click to toggle)
dynare 6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 67,632 kB
  • sloc: cpp: 79,090; ansic: 28,916; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,121; python: 634; makefile: 626; lisp: 163; xml: 18
file content (384 lines) | stat: -rw-r--r-- 12,578 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
function [lpd, dlpd, d2lpd, info] = density(o, x)

% Evaluate the logged prior density at x.
%
% INPUTS
% - o       [dprior]
% - x       [double]   m×1 vector, point where the prior density is evaluated.
%
% OUTPUTS
% - lpd     [double]   scalar, value of the logged prior density at x.
% - dlpd    [double]   m×1 vector, first order derivatives.
% - d2lpd   [double]   m×1 vector, second order derivatives.
%
% REMARKS
% Second order derivatives holder, d2lpd, has the same rank and shape than dlpd because the priors are
% independent (we would have to use a matrix if non orthogonal priors were allowed in Dynare).
%
% EXAMPLE
%
% >> Prior = dprior(bayestopt_, options_.prior_trunc);
% >> lpd = Prior.dsensity(x)

% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

lpd = 0.0;
if nargout>1
    dlpd = zeros(1, length(x));
    if nargout>2
        d2lpd = dlpd;
        if nargout>3
            info = [];
        end
    end
end
if o.isuniform
    if any(x(o.iduniform)-o.p3(o.iduniform)<0) || any(x(o.iduniform)-o.p4(o.iduniform)>0)
        lpd = -Inf ;
        if nargout==4
            info = o.iduniform((x(o.iduniform)-o.p3(o.iduniform)<0) || (x(o.iduniform)-o.p4(o.iduniform)>0));
        end
        return
    end
    lpd = lpd - sum(log(o.p4(o.iduniform)-o.p3(o.iduniform))) ;
    if nargout>1
        dlpd(o.iduniform) = zeros(length(o.iduniform), 1);
        if nargout>2
            d2lpd(o.iduniform) = zeros(length(o.iduniform), 1);
        end
    end
end
if o.isgaussian
    switch nargout
      case 1
        lpd = lpd + sum(lpdfnorm(x(o.idgaussian), o.p6(o.idgaussian), o.p7(o.idgaussian)));
      case 2
        [tmp, dlpd(o.idgaussian)] = lpdfnorm(x(o.idgaussian), o.p6(o.idgaussian), o.p7(o.idgaussian));
        lpd = lpd + sum(tmp);
      case {3,4}
        [tmp, dlpd(o.idgaussian), d2lpd(o.idgaussian)] = lpdfnorm(x(o.idgaussian), o.p6(o.idgaussian), o.p7(o.idgaussian));
        lpd = lpd + sum(tmp);
    end
end
if o.isgamma
    switch nargout
      case 1
        lpd = lpd + sum(lpdfgam(x(o.idgamma)-o.p3(o.idgamma), o.p6(o.idgamma), o.p7(o.idgamma)));
        if isinf(lpd), return, end
      case 2
        [tmp, dlpd(o.idgamma)] = lpdfgam(x(o.idgamma)-o.p3(o.idgamma), o.p6(o.idgamma), o.p7(o.idgamma));
        lpd = lpd + sum(tmp);
        if isinf(lpd), return, end
      case 3
        [tmp, dlpd(o.idgamma), d2lpd(o.idgamma)] = lpdfgam(x(o.idgamma)-o.p3(o.idgamma), o.p6(o.idgamma), o.p7(o.idgamma));
        lpd = lpd + sum(tmp);
        if isinf(lpd), return, end
      case 4
        [tmp, dlpd(o.idgamma), d2lpd(o.idgamma)] = lpdfgam(x(o.idgamma)-o.p3(o.idgamma), o.p6(o.idgamma), o.p7(o.idgamma));
        lpd = lpd + sum(tmp);
        if isinf(lpd)
            info = o.idgamma(isinf(tmp));
            return
        end
    end
end
if o.isbeta
    switch nargout
      case 1
        lpd = lpd + sum(lpdfgbeta(x(o.idbeta), o.p6(o.idbeta), o.p7(o.idbeta), o.p3(o.idbeta), o.p4(o.idbeta)));
        if isinf(lpd), return, end
      case 2
        [tmp, dlpd(o.idbeta)] = lpdfgbeta(x(o.idbeta), o.p6(o.idbeta), o.p7(o.idbeta), o.p3(o.idbeta), o.p4(o.idbeta));
        lpd = lpd + sum(tmp);
        if isinf(lpd), return, end
      case 3
        [tmp, dlpd(o.idbeta), d2lpd(o.idbeta)] = lpdfgbeta(x(o.idbeta), o.p6(o.idbeta), o.p7(o.idbeta), o.p3(o.idbeta), o.p4(o.idbeta));
        lpd = lpd + sum(tmp);
        if isinf(lpd), return, end
      case 4
        [tmp, dlpd(o.idbeta), d2lpd(o.idbeta)] = lpdfgbeta(x(o.idbeta), o.p6(o.idbeta), o.p7(o.idbeta), o.p3(o.idbeta), o.p4(o.idbeta));
        lpd = lpd + sum(tmp);
        if isinf(lpd)
            info = o.idbeta(isinf(tmp));
            return
        end
    end
end
if o.isinvgamma1
    switch nargout
      case 1
        lpd = lpd + sum(lpdfig1(x(o.idinvgamma1)-o.p3(o.idinvgamma1), o.p6(o.idinvgamma1), o.p7(o.idinvgamma1)));
        if isinf(lpd), return, end
      case 2
        [tmp, dlpd(o.idinvgamma1)] = lpdfig1(x(o.idinvgamma1)-o.p3(o.idinvgamma1), o.p6(o.idinvgamma1), o.p7(o.idinvgamma1));
        lpd = lpd + sum(tmp);
        if isinf(lpd), return, end
      case 3
        [tmp, dlpd(o.idinvgamma1), d2lpd(o.idinvgamma1)] = lpdfig1(x(o.idinvgamma1)-o.p3(o.idinvgamma1), o.p6(o.idinvgamma1), o.p7(o.idinvgamma1));
        lpd = lpd + sum(tmp);
        if isinf(lpd), return, end
      case 4
        [tmp, dlpd(o.idinvgamma1), d2lpd(o.idinvgamma1)] = lpdfig1(x(o.idinvgamma1)-o.p3(o.idinvgamma1), o.p6(o.idinvgamma1), o.p7(o.idinvgamma1));
        lpd = lpd + sum(tmp);
        if isinf(lpd)
            info = o.idinvgamma1(isinf(tmp));
            return
        end
    end
end
if o.isinvgamma2
    switch nargout
      case 1
        lpd = lpd + sum(lpdfig2(x(o.idinvgamma2)-o.p3(o.idinvgamma2), o.p6(o.idinvgamma2), o.p7(o.idinvgamma2)));
        if isinf(lpd), return, end
      case 2
        [tmp, dlpd(o.idinvgamma2)] = lpdfig2(x(o.idinvgamma2)-o.p3(o.idinvgamma2), o.p6(o.idinvgamma2), o.p7(o.idinvgamma2));
        lpd = lpd + sum(tmp);
        if isinf(lpd), return, end
      case 3
        [tmp, dlpd(o.idinvgamma2), d2lpd(o.idinvgamma2)] = lpdfig2(x(o.idinvgamma2)-o.p3(o.idinvgamma2), o.p6(o.idinvgamma2), o.p7(o.idinvgamma2));
        lpd = lpd + sum(tmp);
        if isinf(lpd), return, end
      case 4
        [tmp, dlpd(o.idinvgamma2), d2lpd(o.idinvgamma2)] = lpdfig2(x(o.idinvgamma2)-o.p3(o.idinvgamma2), o.p6(o.idinvgamma2), o.p7(o.idinvgamma2));
        lpd = lpd + sum(tmp);
        if isinf(lpd)
            info = o.idinvgamma2(isinf(tmp));
            return
        end
    end
end
if o.isweibull
    switch nargout
      case 1
        lpd = lpd + sum(lpdfgweibull(x(o.idweibull), o.p6(o.idweibull), o.p7(o.idweibull)));
        if isinf(lpd), return, end
      case 2
        [tmp, dlpd(o.idweibull)] = lpdfgweibull(x(o.idweibull), o.p6(o.idweibull), o.p7(o.idweibull));
        lpd = lpd + sum(tmp);
        if isinf(lpd), return, end
      case 3
        [tmp, dlpd(o.idweibull), d2lpd(o.idweibull)] = lpdfgweibull(x(o.idweibull), o.p6(o.idweibull), o.p7(o.idweibull));
        lpd = lpd + sum(tmp);
        if isinf(lpd), return, end
      case 4
        [tmp, dlpd(o.idweibull), d2lpd(o.idweibull)] = lpdfgweibull(x(o.idweibull), o.p6(o.idweibull), o.p7(o.idweibull));
        lpd = lpd + sum(tmp);
        if isinf(lpd)
            info = o.idweibull(isinf(tmp));
            return
        end
    end
end

return % --*-- Unit tests --*--

%@test:1
% Fill global structures with required fields...
prior_trunc = 1e-10;
p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1);    % Prior shape
p1 = .4*ones(14,1);                          % Prior mean
p2 = .2*ones(14,1);                          % Prior std.
p3 = NaN(14,1);
p4 = NaN(14,1);
p5 = NaN(14,1);
p6 = NaN(14,1);
p7 = NaN(14,1);

for i=1:14
    switch p0(i)
      case 1
        % Beta distribution
        p3(i) = 0;
        p4(i) = 1;
        [p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
        p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
      case 2
        % Gamma distribution
        p3(i) = 0;
        p4(i) = Inf;
        [p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
        p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
      case 3
        % Normal distribution
        p3(i) = -Inf;
        p4(i) = Inf;
        p6(i) = p1(i);
        p7(i) = p2(i);
        p5(i) = p1(i);
      case 4
        % Inverse Gamma (type I) distribution
        p3(i) = 0;
        p4(i) = Inf;
        [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
        p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
      case 5
        % Uniform distribution
        [p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
        p3(i) = p6(i);
        p4(i) = p7(i);
        p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
      case 6
        % Inverse Gamma (type II) distribution
        p3(i) = 0;
        p4(i) = Inf;
        [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
        p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
      case 8
        % Weibull distribution
        p3(i) = 0;
        p4(i) = Inf;
        [p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
        p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
      otherwise
        error('This density is not implemented!')
    end
end

BayesInfo.pshape = p0;
BayesInfo.p1 = p1;
BayesInfo.p2 = p2;
BayesInfo.p3 = p3;
BayesInfo.p4 = p4;
BayesInfo.p5 = p5;
BayesInfo.p6 = p6;
BayesInfo.p7 = p7;

% Call the tested routine
try
    Prior = dprior(BayesInfo, prior_trunc, false);

    % Compute density at the prior mode
    lpdstar = Prior.density(p5);

    % Draw random deviates in a loop and evaluate the density.
    LPD = NaN(10000,1);
    parfor i = 1:10000
        x = Prior.draw();
        LPD(i) = Prior.density(x);
    end
    t(1) = true;
catch
    t(1) = false;
end

if t(1)
    t(2) = all(LPD<=lpdstar);
end
T = all(t);
%@eof:1

%@test:2
% Fill global structures with required fields...
prior_trunc = 1e-10;
p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1);    % Prior shape
p1 = .4*ones(14,1);                          % Prior mean
p2 = .2*ones(14,1);                          % Prior std.
p3 = NaN(14,1);
p4 = NaN(14,1);
p5 = NaN(14,1);
p6 = NaN(14,1);
p7 = NaN(14,1);

for i=1:14
    switch p0(i)
      case 1
        % Beta distribution
        p3(i) = 0;
        p4(i) = 1;
        [p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
        p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
      case 2
        % Gamma distribution
        p3(i) = 0;
        p4(i) = Inf;
        [p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
        p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
      case 3
        % Normal distribution
        p3(i) = -Inf;
        p4(i) = Inf;
        p6(i) = p1(i);
        p7(i) = p2(i);
        p5(i) = p1(i);
      case 4
        % Inverse Gamma (type I) distribution
        p3(i) = 0;
        p4(i) = Inf;
        [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
        p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
      case 5
        % Uniform distribution
        [p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
        p3(i) = p6(i);
        p4(i) = p7(i);
        p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
      case 6
        % Inverse Gamma (type II) distribution
        p3(i) = 0;
        p4(i) = Inf;
        [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
        p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
      case 8
        % Weibull distribution
        p3(i) = 0;
        p4(i) = Inf;
        [p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
        p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
      otherwise
        error('This density is not implemented!')
    end
end

BayesInfo.pshape = p0;
BayesInfo.p1 = p1;
BayesInfo.p2 = p2;
BayesInfo.p3 = p3;
BayesInfo.p4 = p4;
BayesInfo.p5 = p5;
BayesInfo.p6 = p6;
BayesInfo.p7 = p7;

% Call the tested routine
try
    Prior = dprior(BayesInfo, prior_trunc, false);
    mu = NaN(14,1);
    std = NaN(14,1);

    for i=1:14
        % Define conditional density (it's also a marginal since priors are orthogonal)
        f = @(x) exp(Prior.densities(substitute(p5, i, x)));
        % TODO: Check the version of Octave we use (integral is available as a compatibility wrapper in latest Octave version)
        m = integral(f, p3(i), p4(i));
        density = @(x) f(x)/m; % rescaling is required since the probability mass depends on the conditioning.
        % Compute the conditional expectation
        mu(i) = integral(@(x) x.*density(x), p3(i), p4(i));
        std(i) = sqrt(integral(@(x) ((x-mu(i)).^2).*density(x), p3(i), p4(i)));
    end

    t(1) = true;
catch
    t(1) = false;
end

if t(1)
    t(2) = all(abs(mu-.4)<1e-6);
    t(3) = all(abs(std-.2)<1e-6);
end
T = all(t);
%@eof:2