File: dprior.m

package info (click to toggle)
dynare 6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 67,632 kB
  • sloc: cpp: 79,090; ansic: 28,916; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,121; python: 634; makefile: 626; lisp: 163; xml: 18
file content (213 lines) | stat: -rw-r--r-- 7,440 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
classdef dprior < handle

% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

    properties
        p1 = [];                         % Prior mean.
        p2 = [];                         % Prior stddev.
        p3 = [];                         % Lower bound of the prior support.
        p4 = [];                         % Upper bound of the prior support.
        p5 = [];                         % Prior mode.
        p6 = [];                         % Prior first hyperparameter.
        p7 = [];                         % Prior second hyperparameter.
        p11 = [];                        % Prior median
        lb = [];                         % Truncated prior lower bound.
        ub = [];                         % Truncated prior upper bound.
        name = {};                       % Name of the parameter
        iduniform = [];                  % Index for the uniform priors.
        idgaussian = [];                 % Index for the gaussian priors.
        idgamma = [];                    % Index for the gamma priors.
        idbeta = [];                     % Index for the beta priors.
        idinvgamma1 = [];                % Index for the inverse gamma type 1 priors.
        idinvgamma2 = [];                % Index for the inverse gamma type 2 priors.
        idweibull = [];                  % Index for the weibull priors.
        isuniform = false;
        isgaussian = false;
        isgamma = false;
        isbeta = false;
        isinvgamma1 = false;
        isinvgamma2 = false;
        isweibull = false;
    end

    methods

        function o = dprior(bayestopt_, PriorTrunc, Uniform)
        % Class constructor.
        %
        % INPUTS
        % - bayestopt_    [struct]   Informations about the prior distribution, aka bayestopt_.
        % - PriorTrunc   [double]   scalar, probability mass to be excluded, aka options_.prior_trunc
        % - Uniform      [logical]  scalar, produce uniform random deviates on the prior support.
        %
        % OUTPUTS
        % - o            [dprior]   scalar, prior object.
        %
        % REQUIREMENTS
        % None.
            if ~nargin % Empty object
                return
            end
            if isfield(bayestopt_, 'p1'), o.p1 = bayestopt_.p1; end
            if isfield(bayestopt_, 'p2'), o.p2 = bayestopt_.p2; end
            if isfield(bayestopt_, 'p3'), o.p3 = bayestopt_.p3; end
            if isfield(bayestopt_, 'p4'), o.p4 = bayestopt_.p4; end
            if isfield(bayestopt_, 'p5'), o.p5 = bayestopt_.p5; end
            if isfield(bayestopt_, 'p6'), o.p6 = bayestopt_.p6; end
            if isfield(bayestopt_, 'p7'), o.p7 = bayestopt_.p7; end
            if isfield(bayestopt_, 'p11'), o.p11 = bayestopt_.p11; end
            bounds = prior_bounds(bayestopt_, PriorTrunc);
            o.lb = bounds.lb;
            o.ub = bounds.ub;
            if nargin>2 && Uniform
                prior_shape = repmat(5, length(o.p6), 1);
            else
                prior_shape = bayestopt_.pshape;
            end
            o.idbeta = find(prior_shape==1);
            if ~isempty(o.idbeta)
                o.isbeta = true;
            end
            o.idgamma = find(prior_shape==2);
            if ~isempty(o.idgamma)
                o.isgamma = true;
            end
            o.idgaussian = find(prior_shape==3);
            if ~isempty(o.idgaussian)
                o.isgaussian = true;
            end
            o.idinvgamma1 = find(prior_shape==4);
            if ~isempty(o.idinvgamma1)
                o.isinvgamma1 = true;
            end
            o.iduniform = find(prior_shape==5);
            if ~isempty(o.iduniform)
                o.isuniform = true;
            end
            o.idinvgamma2 = find(prior_shape==6);
            if ~isempty(o.idinvgamma2)
                o.isinvgamma2 = true;
            end
            o.idweibull = find(prior_shape==8);
            if ~isempty(o.idweibull)
                o.isweibull = true;
            end
        end % dprior (constructor)

    end % methods

end % classdef --*-- Unit tests --*--

%@test:1
%$ % Fill global structures with required fields...
%$ prior_trunc = 1e-10;
%$ p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1);    % Prior shape
%$ p1 = .4*ones(14,1);                          % Prior mean
%$ p2 = .2*ones(14,1);                          % Prior std.
%$ p3 = NaN(14,1);
%$ p4 = NaN(14,1);
%$ p5 = NaN(14,1);
%$ p6 = NaN(14,1);
%$ p7 = NaN(14,1);
%$
%$ for i=1:14
%$    switch p0(i)
%$      case 1
%$        % Beta distribution
%$        p3(i) = 0;
%$        p4(i) = 1;
%$        [p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
%$        p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
%$      case 2
%$        % Gamma distribution
%$        p3(i) = 0;
%$        p4(i) = Inf;
%$        [p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
%$        p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
%$      case 3
%$        % Normal distribution
%$        p3(i) = -Inf;
%$        p4(i) = Inf;
%$        p6(i) = p1(i);
%$        p7(i) = p2(i);
%$        p5(i) = p1(i);
%$      case 4
%$        % Inverse Gamma (type I) distribution
%$        p3(i) = 0;
%$        p4(i) = Inf;
%$        [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
%$        p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
%$      case 5
%$        % Uniform distribution
%$        [p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
%$        p3(i) = p6(i);
%$        p4(i) = p7(i);
%$        p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
%$      case 6
%$        % Inverse Gamma (type II) distribution
%$        p3(i) = 0;
%$        p4(i) = Inf;
%$        [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
%$        p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
%$      case 8
%$        % Weibull distribution
%$        p3(i) = 0;
%$        p4(i) = Inf;
%$        [p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
%$        p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
%$      otherwise
%$        error('This density is not implemented!')
%$    end
%$ end
%$
%$ bayestopt_.pshape = p0;
%$ bayestopt_.p1 = p1;
%$ bayestopt_.p2 = p2;
%$ bayestopt_.p3 = p3;
%$ bayestopt_.p4 = p4;
%$ bayestopt_.p5 = p5;
%$ bayestopt_.p6 = p6;
%$ bayestopt_.p7 = p7;
%$
%$ ndraws = 1e5;
%$ m0 = bayestopt_.p1; %zeros(14,1);
%$ v0 = diag(bayestopt_.p2.^2); %zeros(14);
%$
%$ % Call the tested routine
%$ try
%$    % Instantiate dprior object
%$    o = dprior(bayestopt_, prior_trunc, false);
%$    t(1) = true;
%$ catch
%$     t(1) = false;
%$ end
%$
%$ T = all(t);
%@eof:1

%@test:2
%$ try
%$    % Instantiate dprior object
%$    o = dprior();
%$    t(1) = true;
%$ catch
%$     t(1) = false;
%$ end
%$
%$ T = all(t);
%@eof:2