1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
|
function x0 = stability_mapping(OutputDirectoryName,opt_gsa,M_,oo_,options_,bayestopt_,estim_params_)
% x0 = stability_mapping(OutputDirectoryName,opt_gsa,M_,oo_,options_,bayestopt_,estim_params_)
% Mapping of stability regions in the prior ranges applying
% Monte Carlo filtering techniques.
%
% Inputs
% - OutputDirectoryName [string] name of the output directory
% - opt_gsa [structure] GSA options structure
% - M_ [structure] Matlab's structure describing the model
% - oo_ [structure] Matlab's structure describing the results
% - options_ [structure] Matlab's structure describing the current options
% - bayestopt_ [structure] describing the priors
% - estim_params_ [structure] characterizing parameters to be estimated
%
% Outputs:
% - x0 one parameter vector for which the model is stable.
%
%
% Inputs from opt_gsa structure
% Nsam = MC sample size
% fload = 0 to run new MC; 1 to load prevoiusly generated analysis
% alpha2 = significance level for bivariate sensitivity analysis
% [abs(corrcoef) > alpha2]
% prepSA = 1: save transition matrices for mapping reduced form
% = 0: no transition matrix saved (default)
% pprior = 1: sample from prior ranges (default): sample saved in
% _prior.mat file
% = 0: sample from posterior ranges: sample saved in
% _mc.mat file
%
% GRAPHS
% 1) Pdf's of marginal distributions under the stability (dotted
% lines) and unstability (solid lines) regions
% 2) Cumulative distributions of:
% - stable subset (dotted lines)
% - unacceptable subset (solid lines)
% 3) Bivariate plots of significant correlation patterns
% ( abs(corrcoef) > alpha2) under the stable and unacceptable subsets
%
% USES qmc_sequence, gsa.stability_mapping_univariate, gsa.stability_mapping_bivariate
%
% Written by Marco Ratto
% Joint Research Centre, The European Commission,
% marco.ratto@ec.europa.eu
% Copyright © 2012-2016 European Commission
% Copyright © 2012-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
Nsam = opt_gsa.Nsam;
fload = opt_gsa.load_stab;
alpha2 = opt_gsa.alpha2_stab;
pvalue_ks = opt_gsa.pvalue_ks;
pvalue_corr = opt_gsa.pvalue_corr;
prepSA = (opt_gsa.redform | opt_gsa.identification);
pprior = opt_gsa.pprior;
neighborhood_width = opt_gsa.neighborhood_width;
ilptau = opt_gsa.ilptau;
nliv = opt_gsa.morris_nliv;
ntra = opt_gsa.morris_ntra;
dr_ = oo_.dr;
ys_ = oo_.dr.ys;
nspred = M_.nspred; %size(dr_.ghx,2);
nboth = M_.nboth;
nfwrd = M_.nfwrd;
fname_ = M_.fname;
np = estim_params_.np;
nshock = estim_params_.nvx;
nshock = nshock + estim_params_.nvn;
nshock = nshock + estim_params_.ncx;
nshock = nshock + estim_params_.ncn;
lpmat0=zeros(Nsam,0);
xparam1=[];
%% prepare prior bounds
[~,~,~,lb,ub] = set_prior(estim_params_,M_,options_); %Prepare bounds
if ~isempty(bayestopt_) && any(bayestopt_.pshape > 0)
% Set prior bounds
bounds = prior_bounds(bayestopt_, options_.prior_trunc);
bounds.lb = max(bounds.lb,lb);
bounds.ub = min(bounds.ub,ub);
else % estimated parameters but no declared priors
% No priors are declared so Dynare will estimate the model by
% maximum likelihood with inequality constraints for the parameters.
bounds.lb = lb;
bounds.ub = ub;
if opt_gsa.prior_range==0
warning('GSA:: When using ML, sampling from the prior is not possible. Setting prior_range=1')
opt_gsa.prior_range=1;
end
end
if nargin==0
OutputDirectoryName='';
end
options_mcf.pvalue_ks = pvalue_ks;
options_mcf.pvalue_corr = pvalue_corr;
options_mcf.alpha2 = alpha2;
%% get LaTeX names
name=cell(np,1);
name_tex=cell(np,1);
for jj=1:np
if options_.TeX
[param_name_temp, param_name_tex_temp]= get_the_name(nshock+jj,options_.TeX,M_,estim_params_,options_.varobs);
name_tex{jj,1} = param_name_tex_temp;
name{jj,1} = param_name_temp;
else
param_name_temp = get_the_name(nshock+jj,options_.TeX,M_,estim_params_,options_.varobs);
name{jj,1} = param_name_temp;
end
end
if options_.TeX
options_mcf.param_names_tex = name_tex;
end
options_mcf.param_names = name;
options_mcf.fname_ = fname_;
options_mcf.OutputDirectoryName = OutputDirectoryName;
options_mcf.xparam1 = [];
options_.periods=0;
options_.nomoments=1;
options_.irf=0;
options_.noprint=1;
if fload==0 %run new MC
if isfield(dr_,'ghx')
egg=zeros(length(dr_.eigval),Nsam);
end
yys=zeros(length(dr_.ys),Nsam);
if opt_gsa.morris == 1
[lpmat] = gsa.Sampling_Function_2(nliv, np+nshock, ntra, ones(np+nshock, 1), zeros(np+nshock,1), []);
lpmat = lpmat.*(nliv-1)/nliv+1/nliv/2;
Nsam=size(lpmat,1);
lpmat0 = lpmat(:,1:nshock);
lpmat = lpmat(:,nshock+1:end);
else
if np<1112 && ilptau>0
[lpmat] = qmc_sequence(np, int64(1), 0, Nsam)';
if np>30 || ilptau==2 % scrambled lptau
for j=1:np
lpmat(:,j)=lpmat(randperm(Nsam),j);
end
end
else %ilptau==0
[lpmat] = NaN(Nsam,np);
for j=1:np
lpmat(:,j) = randperm(Nsam)'./(Nsam+1); %latin hypercube
end
end
end
gsa.prior_draw(M_,bayestopt_,options_,estim_params_,1); %initialize
if pprior
for j=1:nshock
if opt_gsa.morris~=1
lpmat0(:,j) = randperm(Nsam)'./(Nsam+1); %latin hypercube
end
if opt_gsa.prior_range
lpmat0(:,j)=lpmat0(:,j).*(bounds.ub(j)-bounds.lb(j))+bounds.lb(j);
end
end
if opt_gsa.prior_range
for j=1:np
lower_bound=max(-options_.huge_number,bounds.lb(j+nshock));
upper_bound=min(options_.huge_number,bounds.ub(j+nshock));
lpmat(:,j)=lpmat(:,j).*(upper_bound-lower_bound)+lower_bound;
end
else
xx=gsa.prior_draw(M_,bayestopt_,options_,estim_params_,0,[lpmat0 lpmat]);
lpmat0=xx(:,1:nshock);
lpmat=xx(:,nshock+1:end);
clear xx;
end
else %posterior analysis
if neighborhood_width>0 && isempty(options_.mode_file)
xparam1 = get_all_parameters(estim_params_,M_);
else
load([options_.mode_file '.mat'],'hh','xparam1');
end
if neighborhood_width>0
for j=1:nshock
if opt_gsa.morris ~= 1
lpmat0(:,j) = randperm(Nsam)'./(Nsam+1); %latin hypercube
end
ub=min([bounds.ub(j) xparam1(j)*(1+neighborhood_width)]);
lb=max([bounds.lb(j) xparam1(j)*(1-neighborhood_width)]);
lpmat0(:,j)=lpmat0(:,j).*(ub-lb)+lb;
end
for j=1:np
ub=xparam1(j+nshock)*(1+sign(xparam1(j+nshock))*neighborhood_width);
lb=xparam1(j+nshock)*(1-sign(xparam1(j+nshock))*neighborhood_width);
if bounds.ub(j+nshock)>=xparam1(j+nshock) && bounds.lb(j+nshock)<=xparam1(j+nshock)
ub=min([bounds.ub(j+nshock) ub]);
lb=max([bounds.lb(j+nshock) lb]);
else
fprintf('\nstab_map_:: the calibrated value of param %s for neighborhood_width sampling is outside prior bounds.\nWe allow violation of bounds for this parameter, but if this was not done on purpose, please change calibration before running neighborhood_width sampling\n', bayestopt_.name{j+nshock})
end
lpmat(:,j)=lpmat(:,j).*(ub-lb)+lb;
end
else
d = chol(inv(hh));
lp=randn(Nsam*2,nshock+np)*d+kron(ones(Nsam*2,1),xparam1');
lnprior=zeros(1,Nsam*2);
for j=1:Nsam*2
lnprior(j) = any(lp(j,:)'<=bounds.lb | lp(j,:)'>=bounds.ub);
end
ireal=1:2*Nsam;
ireal=ireal(lnprior==0);
lp=lp(ireal,:);
Nsam=min(Nsam, length(ireal));
lpmat0=lp(1:Nsam,1:nshock);
lpmat=lp(1:Nsam,nshock+1:end);
clear lp lnprior ireal;
end
end
%
h = dyn_waitbar(0,'Please wait...');
istable=1:Nsam;
jstab=0;
iunstable=1:Nsam;
iindeterm=zeros(1,Nsam);
iwrong=zeros(1,Nsam);
inorestriction=zeros(1,Nsam);
irestriction=zeros(1,Nsam);
infox=zeros(Nsam,1);
for j=1:Nsam
M_ = set_all_parameters([lpmat0(j,:) lpmat(j,:)]',estim_params_,M_);
try
if ~isempty(options_.endogenous_prior_restrictions.moment)
[Tt,Rr,~,info,oo_.dr,M_.params] = dynare_resolve(M_,options_,oo_.dr,oo_.steady_state,oo_.exo_steady_state,oo_.exo_det_steady_state);
else
[Tt,Rr,~,info,oo_.dr,M_.params] = dynare_resolve(M_,options_,oo_.dr,oo_.steady_state,oo_.exo_steady_state,oo_.exo_det_steady_state,'restrict');
end
infox(j,1)=info(1);
if infox(j,1)==0 && ~exist('T','var')
dr_=oo_.dr;
if prepSA
try
T=zeros(size(dr_.ghx,1),size(dr_.ghx,2)+size(dr_.ghu,2),Nsam);
catch ME
if strcmp('MATLAB:nomem',ME.identifier)
prepSA=0;
disp('The model is too large for storing state space matrices ...')
disp('for mapping reduced form or for identification')
end
T=[];
end
else
T=[];
end
egg=zeros(length(dr_.eigval),Nsam);
end
if infox(j,1)
% disp('no solution'),
if isfield(oo_.dr,'ghx')
oo_.dr=rmfield(oo_.dr,'ghx');
end
if (infox(j,1)<3 || infox(j,1)>5) && isfield(oo_.dr,'eigval')
oo_.dr=rmfield(oo_.dr,'eigval');
end
end
catch ME
if isfield(oo_.dr,'eigval')
oo_.dr=rmfield(oo_.dr,'eigval');
end
if isfield(oo_.dr,'ghx')
oo_.dr=rmfield(oo_.dr,'ghx');
end
disp('No solution could be found')
end
dr_ = oo_.dr;
if isfield(dr_,'ghx')
egg(:,j) = sort(dr_.eigval);
if prepSA
jstab=jstab+1;
T(:,:,jstab) = [dr_.ghx dr_.ghu];
end
if ~exist('nspred','var')
nspred = dr_.nspred; %size(dr_.ghx,2);
nboth = dr_.nboth;
nfwrd = dr_.nfwrd;
end
info=endogenous_prior_restrictions(Tt,Rr,M_,options_,oo_.dr,oo_.steady_state,oo_.exo_steady_state,oo_.exo_det_steady_state);
infox(j,1)=info(1);
if info(1)
inorestriction(j)=j;
else
iunstable(j)=0;
irestriction(j)=j;
end
else
istable(j)=0;
if isfield(dr_,'eigval')
egg(:,j) = sort(dr_.eigval);
if exist('nspred','var')
if any(isnan(egg(1:nspred,j)))
iwrong(j)=j;
else
if (nboth || nfwrd) && abs(egg(nspred+1,j))<=options_.qz_criterium
iindeterm(j)=j;
end
end
end
else
if exist('egg','var')
egg(:,j)=ones(size(egg,1),1).*NaN;
end
iwrong(j)=j;
end
end
ys_=real(dr_.ys);
yys(:,j) = ys_;
if mod(j,3)
dyn_waitbar(j/Nsam,h,['MC iteration ',int2str(j),'/',int2str(Nsam)])
end
end
dyn_waitbar_close(h);
if prepSA && jstab
T=T(:,:,1:jstab);
else
T=[];
end
istable=istable(istable~=0); % stable params ignoring restrictions
irestriction=irestriction(irestriction~=0); % stable params & restrictions OK
inorestriction=inorestriction(inorestriction~=0); % stable params violating restrictions
iunstable=iunstable(iunstable~=0); % violation of BK & restrictions & solution could not be found (whatever goes wrong)
iindeterm=iindeterm(iindeterm~=0); % indeterminacy
iwrong=iwrong(iwrong~=0); % dynare could not find solution
ixun=iunstable(~ismember(iunstable,[iindeterm,iwrong,inorestriction])); % explosive roots
bkpprior.pshape=bayestopt_.pshape;
bkpprior.p1=bayestopt_.p1;
bkpprior.p2=bayestopt_.p2;
bkpprior.p3=bayestopt_.p3;
bkpprior.p4=bayestopt_.p4;
if pprior
if ~prepSA
save([OutputDirectoryName filesep fname_ '_prior.mat'], ...
'bkpprior','lpmat','lpmat0','irestriction','iunstable','istable','iindeterm','iwrong','ixun', ...
'egg','yys','nspred','nboth','nfwrd','infox')
else
save([OutputDirectoryName filesep fname_ '_prior.mat'], ...
'bkpprior','lpmat','lpmat0','irestriction','iunstable','istable','iindeterm','iwrong','ixun', ...
'egg','yys','T','nspred','nboth','nfwrd','infox')
end
else %~pprior
if ~prepSA
save([OutputDirectoryName filesep fname_ '_mc.mat'], ...
'lpmat','lpmat0','irestriction','iunstable','istable','iindeterm','iwrong','ixun', ...
'egg','yys','nspred','nboth','nfwrd','infox')
else
save([OutputDirectoryName filesep fname_ '_mc.mat'], ...
'lpmat','lpmat0','irestriction','iunstable','istable','iindeterm','iwrong','ixun', ...
'egg','yys','T','nspred','nboth','nfwrd','infox')
end
end
else %load old run
if pprior
filetoload=[OutputDirectoryName filesep fname_ '_prior.mat'];
else
filetoload=[OutputDirectoryName filesep fname_ '_mc.mat'];
end
load(filetoload,'lpmat','lpmat0','irestriction','iunstable','istable','iindeterm','iwrong','ixun','infox')
Nsam = size(lpmat,1);
if pprior==0 && ~isempty(options_.mode_file)
load([options_.mode_file '.mat'],'xparam1');
end
if prepSA && isempty(strmatch('T',who('-file', filetoload),'exact'))
h = dyn_waitbar(0,'Please wait...');
options_.periods=0;
options_.nomoments=1;
options_.irf=0;
options_.noprint=1;
[~, oo_, options_] = stoch_simul(M_, options_, oo_, []);
ntrans=length(istable);
yys=NaN(length(ys_),ntrans);
for j=1:ntrans
M_.params(estim_params_.param_vals(:,1)) = lpmat(istable(j),:)';
[~,~,~,~,oo_.dr,M_.params] = dynare_resolve(M_,options_,oo_.dr,oo_.steady_state,oo_.exo_steady_state,oo_.exo_det_steady_state,'restrict');
if ~exist('T','var')
T=zeros(size(dr_.ghx,1),size(dr_.ghx,2)+size(dr_.ghu,2),ntrans);
end
dr_ = oo_.dr;
T(:,:,j) = [dr_.ghx dr_.ghu];
ys_=real(dr_.ys);
yys(:,j) = ys_;
if mod(j,3)
dyn_waitbar(j/ntrans,h,['MC iteration ',int2str(j),'/',int2str(ntrans)])
end
end
dyn_waitbar_close(h);
save(filetoload,'T','-append')
end
end
%% display and save output
if pprior
aunstname='prior_unstable'; aunsttitle='Prior StabMap: explosiveness of solution';
aindname='prior_indeterm'; aindtitle='Prior StabMap: Indeterminacy';
awrongname='prior_wrong'; awrongtitle='Prior StabMap: inability to find solution';
acalibname='prior_calib'; acalibtitle='Prior StabMap: IRF/moment restrictions';
asname='prior_stable'; atitle='Prior StabMap: Parameter driving non-existence of unique stable solution (Unacceptable)';
else
aunstname='mc_unstable'; aunsttitle='MC (around posterior mode) StabMap: explosiveness of solution';
aindname='mc_indeterm'; aindtitle='MC (around posterior mode) StabMap: Indeterminacy';
awrongname='mc_wrong'; awrongtitle='MC (around posterior mode) StabMap: inability to find solution';
acalibname='mc_calib'; acalibtitle='MC (around posterior mode) StabMap: IRF/moment restrictions';
asname='mc_stable'; atitle='MC (around posterior mode) StabMap: Parameter driving non-existence of unique stable solution (Unacceptable)';
end
delete([OutputDirectoryName,filesep,fname_,'_',asname,'.*']);
delete([OutputDirectoryName,filesep,fname_,'_',acalibname,'.*']);
delete([OutputDirectoryName,filesep,fname_,'_',aindname,'.*']);
delete([OutputDirectoryName,filesep,fname_,'_',aunstname,'.*']);
delete([OutputDirectoryName,filesep,fname_,'_',awrongname,'.*']);
fprintf('\nSensitivity Analysis: Stability mapping:\n')
if ~isempty(iunstable) || ~isempty(iwrong)
fprintf('%4.1f%% of the prior support gives unique saddle-path solution.\n',length(istable)/Nsam*100)
fprintf('%4.1f%% of the prior support gives explosive dynamics.\n',(length(ixun) )/Nsam*100)
if ~isempty(iindeterm)
fprintf('%4.1f%% of the prior support gives indeterminacy.\n',length(iindeterm)/Nsam*100)
end
inorestriction = istable(~ismember(istable,irestriction)); % violation of prior restrictions
if ~isempty(iwrong) || ~isempty(inorestriction)
skipline()
if any(infox==49)
fprintf('%4.1f%% of the prior support violates prior restrictions.\n',(length(inorestriction) )/Nsam*100)
end
if ~isempty(iwrong)
skipline()
disp(['For ',num2str(length(iwrong)/Nsam*100,'%4.1f'),'% of the prior support dynare could not find a solution.'])
skipline()
end
if any(infox==1)
disp([' For ',num2str(length(find(infox==1))/Nsam*100,'%4.1f'),'% The model doesn''t determine the current variables uniquely.'])
end
if any(infox==2)
disp([' For ',num2str(length(find(infox==2))/Nsam*100,'%4.1f'),'% MJDGGES returned an error code.'])
end
if any(infox==6)
disp([' For ',num2str(length(find(infox==6))/Nsam*100,'%4.1f'),'% The jacobian evaluated at the deterministic steady state is complex.'])
end
if any(infox==19)
disp([' For ',num2str(length(find(infox==19))/Nsam*100,'%4.1f'),'% The steadystate routine has thrown an exception (inconsistent deep parameters).'])
end
if any(infox==20)
disp([' For ',num2str(length(find(infox==20))/Nsam*100,'%4.1f'),'% Cannot find the steady state.'])
end
if any(infox==21)
disp([' For ',num2str(length(find(infox==21))/Nsam*100,'%4.1f'),'% The steady state is complex.'])
end
if any(infox==22)
disp([' For ',num2str(length(find(infox==22))/Nsam*100,'%4.1f'),'% The steady has NaNs.'])
end
if any(infox==23)
disp([' For ',num2str(length(find(infox==23))/Nsam*100,'%4.1f'),'% M_.params has been updated in the steadystate routine and has complex valued scalars.'])
end
if any(infox==24)
disp([' For ',num2str(length(find(infox==24))/Nsam*100,'%4.1f'),'% M_.params has been updated in the steadystate routine and has some NaNs.'])
end
if any(infox==30)
disp([' For ',num2str(length(find(infox==30))/Nsam*100,'%4.1f'),'% Ergodic variance can''t be computed.'])
end
end
skipline()
if length(iunstable)<Nsam || length(istable)>1
itot = 1:Nsam;
isolve = itot(~ismember(itot,iwrong)); % dynare could find a solution
% Blanchard Kahn
if neighborhood_width
options_mcf.xparam1 = xparam1(nshock+1:end);
end
itmp = itot(~ismember(itot,istable));
options_mcf.amcf_name = asname;
options_mcf.amcf_title = atitle;
options_mcf.beha_title = 'unique Stable Saddle-Path';
options_mcf.nobeha_title = 'NO unique Stable Saddle-Path';
if options_.TeX
options_mcf.beha_title_latex = 'unique Stable Saddle-Path';
options_mcf.nobeha_title_latex = 'NO unique Stable Saddle-Path';
end
options_mcf.title = 'unique solution';
gsa.monte_carlo_filtering_analysis(lpmat, istable, itmp, options_mcf, M_, options_, bayestopt_, estim_params_);
if ~isempty(iindeterm)
itmp = isolve(~ismember(isolve,iindeterm));
options_mcf.amcf_name = aindname;
options_mcf.amcf_title = aindtitle;
options_mcf.beha_title = 'NO indeterminacy';
options_mcf.nobeha_title = 'indeterminacy';
if options_.TeX
options_mcf.beha_title_latex = 'NO indeterminacy';
options_mcf.nobeha_title_latex = 'indeterminacy';
end
options_mcf.title = 'indeterminacy';
gsa.monte_carlo_filtering_analysis(lpmat, itmp, iindeterm, options_mcf, M_, options_, bayestopt_, estim_params_);
end
if ~isempty(ixun)
itmp = isolve(~ismember(isolve,ixun));
options_mcf.amcf_name = aunstname;
options_mcf.amcf_title = aunsttitle;
options_mcf.beha_title = 'NO explosive solution';
options_mcf.nobeha_title = 'explosive solution';
if options_.TeX
options_mcf.beha_title_latex = 'NO explosive solution';
options_mcf.nobeha_title_latex = 'explosive solution';
end
options_mcf.title = 'instability';
gsa.monte_carlo_filtering_analysis(lpmat, itmp, ixun, options_mcf, M_, options_, bayestopt_, estim_params_);
end
inorestriction = istable(~ismember(istable,irestriction)); % violation of prior restrictions
iwrong = iwrong(~ismember(iwrong,inorestriction)); % what went wrong beyond prior restrictions
if ~isempty(iwrong)
itmp = itot(~ismember(itot,iwrong));
options_mcf.amcf_name = awrongname;
options_mcf.amcf_title = awrongtitle;
options_mcf.beha_title = 'NO inability to find a solution';
options_mcf.nobeha_title = 'inability to find a solution';
if options_.TeX
options_mcf.beha_title_latex = 'NO inability to find a solution';
options_mcf.nobeha_title_latex = 'inability to find a solution';
end
options_mcf.title = 'inability to find a solution';
gsa.monte_carlo_filtering_analysis(lpmat, itmp, iwrong, options_mcf, M_, options_, bayestopt_, estim_params_);
end
if ~isempty(irestriction)
if neighborhood_width
options_mcf.xparam1 = xparam1;
end
np=size(bayestopt_.name,1);
name=cell(np,1);
name_tex=cell(np,1);
for jj=1:np
if options_.TeX
[param_name_temp, param_name_tex_temp]= get_the_name(jj,options_.TeX,M_,estim_params_,options_.varobs);
name_tex{jj,1} = param_name_tex_temp;
name{jj,1} = param_name_temp;
else
param_name_temp = get_the_name(jj,options_.TeX,M_,estim_params_,options_.varobs);
name{jj,1} = param_name_temp;
end
end
if options_.TeX
options_mcf.param_names_tex = name_tex;
end
options_mcf.param_names = name;
options_mcf.amcf_name = acalibname;
options_mcf.amcf_title = acalibtitle;
options_mcf.beha_title = 'prior IRF/moment calibration';
options_mcf.nobeha_title = 'NO prior IRF/moment calibration';
if options_.TeX
options_mcf.beha_title_latex = 'prior IRF/moment calibration';
options_mcf.nobeha_title_latex = 'NO prior IRF/moment calibration';
end
options_mcf.title = 'prior restrictions';
gsa.monte_carlo_filtering_analysis([lpmat0 lpmat], irestriction, inorestriction, options_mcf, M_, options_, bayestopt_, estim_params_);
iok = irestriction(1);
x0 = [lpmat0(iok,:)'; lpmat(iok,:)'];
else
iok = istable(1);
x0=0.5.*(bounds.ub(1:nshock)-bounds.lb(1:nshock))+bounds.lb(1:nshock);
x0 = [x0; lpmat(iok,:)'];
end
M_ = set_all_parameters(x0,estim_params_,M_);
[oo_.dr,~,M_.params] = resol(0,M_,options_,oo_.dr ,oo_.steady_state, oo_.exo_steady_state, oo_.exo_det_steady_state);
else
disp('All parameter values in the specified ranges are not acceptable!')
x0=[];
end
else
disp('All parameter values in the specified ranges give unique saddle-path solution,')
disp('and match prior IRF/moment restriction(s) if any!')
x0=0.5.*(bounds.ub(1:nshock)-bounds.lb(1:nshock))+bounds.lb(1:nshock);
x0 = [x0; lpmat(istable(1),:)'];
end
skipline(1);
xparam1=x0;
save([OutputDirectoryName filesep 'prior_ok.mat'],'xparam1');
|