1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
function [zdata, T, R, CONST, ss, update_flag]=mkdatap_anticipated_dyn(n_periods,DM,...
T_max,binding_indicator,irfshock_pos,scalefactor_mod,init,update_flag)
% function [zdata, T, R, CONST, ss]=mkdatap_anticipated_dyn(nperiods,DM,...
% Tmax,binding_indicator,irfshockpos,scalefactormod,init,update_flag)
%
% Inputs:
% - n_periods [double] number for periods for simulation
% - DM [structure] Dynamic model
% - T_max [Tmax] last period where constraints bind
% - binding_indicator [T+1] indicator for constraint violations
% - irfshock_pos [double] shock position
% - scalefactor_mod [double] shock values
% - init [double] [N by 1] initial value of endogenous variables
% - update_flag [boolean] flag whether to update results
%
% Output:
% - zdata [double] T+1 by N matrix of simulated data
% - T [N by N] transition matrix of state space
% - R [N by N_exo] shock impact matrix of state space
% - CONST [N by 1] constant of state space
% - ss [structure] state space system
% - update_flag [boolean] flag that results have been updated
%
% Original authors: Luca Guerrieri and Matteo Iacoviello
% Original file downloaded from:
% https://www.matteoiacoviello.com/research_files/occbin_20140630.zip
% Adapted for Dynare by Dynare Team.
%
% This code is in the public domain and may be used freely.
% However the authors would appreciate acknowledgement of the source by
% citation of any of the following papers:
%
% Luca Guerrieri and Matteo Iacoviello (2015): "OccBin: A toolkit for solving
% dynamic models with occasionally binding constraints easily"
% Journal of Monetary Economics 70, 22-38
persistent dictionary
if update_flag
dictionary=[];
update_flag=false;
end
%Initialize outputs
n_vars = DM.n_vars;
n_exo = DM.n_exo;
T = DM.decrulea;
CONST = zeros(n_vars,1);
R = DM.decruleb;
if nargin<7 || isempty(init)
init=zeros(n_vars,1);
end
if nargin<6
scalefactor_mod=1;
end
% % get the time-dependent decision rules
if ~isempty(dictionary)
if (length(binding_indicator)>size(dictionary.binding_indicator,1))
dictionary.binding_indicator = [dictionary.binding_indicator; zeros(length(binding_indicator)-size(dictionary.binding_indicator,1),size(dictionary.binding_indicator,2))];
end
if (length(binding_indicator(:))<size(dictionary.binding_indicator,1))
binding_indicator = [binding_indicator; zeros(size(dictionary.binding_indicator,1)-size(binding_indicator,1),1) ];
end
end
if T_max > 0
if isempty(dictionary)
temp = -(DM.Astarbarmat*DM.decrulea+DM.Bstarbarmat)\[DM.Cstarbarmat DM.Jstarbarmat DM.Dstarbarmat];
dictionary.binding_indicator(:,1) = [1; zeros(n_periods,1)];
dictionary.ss(1).T = temp(:,1:n_vars);
dictionary.ss(1).R = temp(:,n_vars+1:n_vars+n_exo);
dictionary.ss(1).C = temp(:,n_vars+n_exo+1:end);
end
ireg(T_max)=1;
% equivalent to pre-multiplying by the inverse above if the target
% matrix is invertible. Otherwise it yields the minimum state solution
%P(:,:,Tmax) = -(Astarbarmat*decrulea+Bstarbarmat)\Cstarbarmat;
%D(:,Tmax) = -(Astarbarmat*decrulea+Bstarbarmat)\Dstarbarmat;
icount=length(dictionary.ss);
for i = T_max-1:-1:1
tmp = 0*binding_indicator;
tmp(1:end-i+1) = binding_indicator(i:end);
itmp = find(~any(dictionary.binding_indicator-tmp));
if ~isempty(itmp)
ireg(i) = itmp;
else
icount=icount+1;
ireg(i) = icount;
dictionary.binding_indicator(1:length(tmp),icount) = tmp;
if binding_indicator(i)
temp = -(DM.Bstarbarmat+DM.Astarbarmat*dictionary.ss(ireg(i+1)).T)\[DM.Cstarbarmat DM.Jstarbarmat DM.Astarbarmat*dictionary.ss(ireg(i+1)).C+DM.Dstarbarmat];
dictionary.ss(icount).T = temp(:,1:n_vars);
dictionary.ss(icount).R = temp(:,n_vars+1:n_vars+n_exo);
dictionary.ss(icount).C = temp(:,n_vars+n_exo+1:end);
else
temp = -(DM.Bbarmat+DM.Abarmat*dictionary.ss(ireg(i+1)).T)\[DM.Cbarmat DM.Jbarmat (DM.Abarmat*dictionary.ss(ireg(i+1)).C)];
dictionary.ss(icount).T = temp(:,1:n_vars);
dictionary.ss(icount).R = temp(:,n_vars+1:n_vars+n_exo);
dictionary.ss(icount).C = temp(:,n_vars+n_exo+1:end);
end
end
end
E = dictionary.ss(ireg(1)).R;
ss = dictionary.ss(ireg(1:T_max));
else
ss = [];
end
% generate data
% history will contain data, the state vector at each period in time will
% be stored columnwise.
history = zeros(n_vars,n_periods+1);
history(:,1) = init;
errvec = zeros(n_exo,1);
% deal with predetermined conditions
errvec(irfshock_pos) = scalefactor_mod;
% deal with shocks
irfpos =1;
if irfpos <=T_max
history(:,irfpos+1) = dictionary.ss(ireg(irfpos)).T* history(:,irfpos)+...
dictionary.ss(ireg(irfpos)).C + E*errvec;
T = dictionary.ss(ireg(irfpos)).T;
CONST = dictionary.ss(ireg(irfpos)).C;
R = E;
else
history(:,irfpos+1) = DM.decrulea*history(:,irfpos)+DM.decruleb*errvec;
end
% all other periods
for irfpos=2:n_periods+1
if irfpos <=T_max
history(:,irfpos+1) = dictionary.ss(ireg(irfpos)).T* history(:,irfpos)+...
dictionary.ss(ireg(irfpos)).C;
else
history(:,irfpos+1) = DM.decrulea*history(:,irfpos);
end
end
zdata = history(:,2:end)';
|