1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
function dcontrib(varargin)
% Computes dynamic contributions to a subset of endogenous variables in a semi structural model.
%
% EXAMPLE
%
% >> dcontrib --model sandbox.mod --tags zpac eq:x1 --database ds --output results --range 2023Q1:2073Q1
%
% zpac and eq:x1 are the equation tags of the equations determining the endogenous variables for which we want to compute
% the contributions of the other (exogenous) variables, sandbox.mod is the name of the file from which we exctract these
% equations, ds is a dseries object containing the data, 2023Q1:2073Q1 is the time range over which we compute the
% contributions, and results the name of the structure containing the contributions (as dseries objects) for each endogenous
% variable.
%
% INPUTS
% --model name of a mod file (with extension)
% --tags list of equations (equation tags assocated to the endogenous variables for which we want to compute the contributions)
% --database dseries object
% --baseline dseries object (path for the exogenous variables)
% --range followed by a dates range
% --method followed by cumulate (default) or diff.
% --log returns the variables in logs
%
% REMARKS
% [1] --baseline and --range are not compatible.
% [2] --variables is followed by a space separated list of names, it is assumed that each variable is associated with an equation tag.
% [3] In the context of an error correction or PAC equation, if one is willing to decompose the endogenous variable and the target then the equation tag for the target must also be provided.
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
global M_
if nargin==1 && strcmpi(varargin{1}, '--help')
skipline()
disp('--model followed by the name of a mod file (with extension) [mandatory]')
disp('--tags followed by a list of equation tags [mandatory]')
disp('--database followed by dseries object [mandatory]')
disp('--baseline followed by dseries object (path for the exogenous variables)')
disp('--range followed by a dates range')
disp('--method followed by keywords cumulate or diff')
disp('--output followed by a name for the structure holding the results [mandatory]')
disp('--log to return the contributions in logs')
skipline()
return
end
model = getmodel(varargin);
% First call to dynare to obtain the json verison of the model.
dynare(model(1:end-4), 'nopreprocessoroutput', 'notime', 'json=compute')
delete(sprintf('%s.log', model(1:end-4)))
eqtags = geteqtags(varargin);
variables = cell(length(eqtags), 1);
for i=1:length(eqtags)
variables(i) = get_variables_and_parameters_in_expression(get_lhs_and_rhs(eqtags{i}, M_, true));
end
% Cherry pick equations required for the decomposition.
cherrypickdir = sprintf('cherry-pick-%s', randomstring(10));
cherrypick(model(1:end-4), cherrypickdir, eqtags, false);
rmdir(model(1:end-4), 's')
rmdir(sprintf('+%s', model(1:end-4)), 's')
modfilename = sprintf('dcontrib_%s.mod', randomstring(10));
aggregate(modfilename, {}, '', cherrypickdir);
rmdir(cherrypickdir, 's')
% Second call to dynare (on the exctracted equations)
dynare(modfilename(1:end-4), 'nopreprocessoroutput', 'notime', 'json=compute')
% Get dataset
dname = getdatasetname(varargin);
ds = evalin('caller', dname);
if ~isdseries(ds)
error('dcontrib:getdataset: --dataset must be followed by a dseries object.')
end
% Create a dseries object for the paths of the exogenous variables
xvariables = ds{M_.exo_names{:}};
% Get initial and terminal periods (if defined)
[firstperiod, lastperiod] = getperiods(varargin);
if firstperiod<=ds.dates(1)+M_.orig_maximum_lag
error('dcontrib:: Try increase firstperiod (>%s).', char(ds.dates(1)+M_.orig_maximum_lag))
end
if lastperiod>ds.dates(end)
error('dcontrib:: Try reduce lastperiod (<=%s).', char(ds.dates(end)))
end
if islog(varargin)
transform = @(x) log(x);
else
transform = @(x) x;
end
% Load baseline (if it makes sense)
if isempty(firstperiod)
baselinename = getbaselinename(varargin);
baseline = evalin('caller', baselinename);
if ~isdseries(baseline)
error('dcontrib:getdataset: --baseline must be followed by a dseries object.')
end
firstperiod = baseline.dates(1);
lastperiod = baseline.dates(end);
baseline = baseline{M_.exo_names{:}};
else
% Set default baseline (exogenous variable levels in firstperiod)
baseline = xvariables(firstperiod);
baseline = repmat(baseline.data, lastperiod-firstperiod+1, 1);
baseline = dseries(baseline, firstperiod, M_.exo_names);
end
% get method for computing contributions
method = getmethod(varargin);
% Restrict the observations for the exogenous variables to the pertinent tim range
xvariables = xvariables(firstperiod:lastperiod);
% Set initial conditions for the simulation.
initialconditions = ds(ds.dates(1):firstperiod-1);
% Simulation on the baseline (track the effects of the initial state if the model is autoregressive)
S.baseline = simul_backward_model(initialconditions, lastperiod-firstperiod+1, baseline);
% contributions is a dseries object holding the marginal contribution of the baseline and
% each exogenous variable to endogenous variable z
switch method
case 'cumulate'
% Add exogenous variables one by one and simulate the model (-> cumulated contributions)
for i=1:xvariables.vobs
name = xvariables.name{i};
baseline{name} = xvariables{name};
S.(name) = simul_backward_model(initialconditions, lastperiod-firstperiod+1, baseline);
end
% Compute marginal contributions
for j=1:length(variables)
cumulatedcontribs = S.baseline{variables{j}}(firstperiod:lastperiod).data;
contributions.(variables{j}) = dseries(transform(cumulatedcontribs), firstperiod, 'baseline');
for i=1:xvariables.vobs
name = xvariables.name{i};
ts = S.(name);
data = ts{variables{j}}(firstperiod:lastperiod).data;
contributions.(variables{j}) = [contributions.(variables{j}), dseries(transform(data)-transform(cumulatedcontribs), firstperiod, name)];
cumulatedcontribs = data;
end
contributions.(variables{j}) = contributions.(variables{j})(firstperiod:lastperiod);
end
case 'diff'
for i=1:xvariables.vobs
name = xvariables.name{i};
Baseline = baseline;
Baseline{name} = xvariables{name};
S.(name) = simul_backward_model(initialconditions, lastperiod-firstperiod+1, Baseline);
end
% Compute marginal contributions (removing baseline)
for j=1:length(variables)
cumulatedcontribs = S.baseline{variables{j}}(firstperiod:lastperiod).data;
contributions.(variables{j}) = dseries(transform(cumulatedcontribs), firstperiod, 'baseline');
for i=1:xvariables.vobs
name = xvariables.name{i};
ts = S.(name);
data = ts{variables{j}}(firstperiod:lastperiod).data;
contributions.(variables{j}) = [contributions.(variables{j}), dseries(transform(data)-transform(cumulatedcontribs), firstperiod, name)];
end
contributions.(variables{j}) = contributions.(variables{j})(firstperiod:lastperiod);
end
otherwise
error('Unknown method (%s)', method)
end
% Save output in caller workspace
oname = getoutputname(varargin);
assignin('caller', oname, contributions)
% Cleanup
rmdir(modfilename(1:end-4), 's')
rmdir(sprintf('+%s', modfilename(1:end-4)), 's')
delete(sprintf('%s.mod', modfilename(1:end-4)))
delete(sprintf('%s.log', modfilename(1:end-4)))
end
function model = getmodel(cellarray)
% Return variables for which we want to compute the contributions.
%
% INPUTS
% - cellarray [char] 1×n cell array of row char arrays.
%
% OUTPUTS
% - var [char] name of the model (with extension)
mpos = positions(cellarray);
model = cellarray{mpos+1};
end
function eqtags = geteqtags(cellarray)
% Return equation tags for the equations we want to compute the contributions.
%
% INPUTS
% - cellarray [char] 1×n cell array of row char arrays.
%
% OUTPUTS
% - eqtags [char] 1×p cell array of row char arrays.
[~, vpos, ~, ~, ~, ~, ~, ~, indices] = positions(cellarray);
lastvalue = indices(find(indices==vpos)+1)-1;
eqtags = cellarray(vpos+1:lastvalue);
end
function dname = getdatasetname(cellarray)
% Return the name of the dataset.
%
% INPUTS
% - cellarray [char] 1×n cell array of row char arrays.
%
% OUTPUTS
% - dname [char] dataset name for endogenous and exogenous variables
[~, ~, dpos] = positions(cellarray);
dname = cellarray{dpos+1};
end
function [firstperiod, lastperiod] = getperiods(cellarray)
% Return variables for which we want to compute the contributions.
%
% INPUTS
% - cellarray [char] 1×n cell array of row char arrays.
%
% OUTPUTS
% - ds [dseries] dataset for endogenous and exogenous variables
[~, ~, ~, rpos] = positions(cellarray);
firstperiod = dates();
lastperiod = dates();
if ~isempty(rpos)
try
tmp = strsplit(cellarray{rpos+1},':');
firstperiod = dates(tmp{1});
lastperiod = dates(tmp{2});
catch
error('dcontrib:getperiods: Cannot convert the --range argument to dates objects.')
end
if lastperiod<=firstperiod
error('dcontrib:getperiods: In --range A:B we must have B>A.')
end
end
end
function dname = getbaselinename(cellarray)
% Return the name of the dataset.
%
% INPUTS
% - cellarray [char] 1×n cell array of row char arrays.
%
% OUTPUTS
% - dname [char] baseline name for endogenous and exogenous variables
[~, ~, ~, ~, bpos] = positions(cellarray);
dname = cellarray{bpos+1};
end
function oname = getoutputname(cellarray)
% Return the name of the output.
%
% INPUTS
% - cellarray [char] 1×n cell array of row char arrays.
%
% OUTPUTS
% - dname [char] baseline name for endogenous and exogenous variables
[~, ~, ~, ~, ~, opos] = positions(cellarray);
oname = cellarray{opos+1};
end
function method = getmethod(cellarray)
% Return the method for computing the dynaamic contributions.
%
% INPUTS
% - cellarray [char] 1×n cell array of row char arrays.
%
% OUTPUTS
% - method [char] method: 'cumulate' or 'diff'
[~, ~, ~, ~, ~, ~, kpos] = positions(cellarray);
if isempty(kpos)
method = 'cumulate';
else
method = cellarray{kpos+1};
end
end
function bool = islog(cellarray)
% Returns true if the contributions are required in logs.
%
% INPUTS
% - cellarray [char] 1×n cell array of row char arrays.
%
% OUTPUTS
% - method [char] method: 'cumulate' or 'diff'
[~, ~, ~, ~, ~, ~, ~, lpos] = positions(cellarray);
bool = ~isempty(lpos);
end
function [mpos, vpos, dpos, rpos, bpos, opos, kpos, lpos, indices] = positions(cellarray)
% Return positions of the arguments.
%
% INPUTS
% - cellarray [char] 1×n cell array of row char arrays.
%
% OUTPUTS
% - mpos [integer] scalar, index for the --model argument.
% - vpos [integer] scalar, index for the --tags arguments.
% - dpos [integer] scalar, index for the --database argument.
% - rpos [integer] scalar, index for the --range argument.
% - bpos [integer] scalar. index for the --baseline argument.
% - opos [integer] scalar, index for the --output argument.
% - kpos [integer] scalar, index for the --method argument.
% - lpos [integer] scalar, index for the --log option.
% Index for --model argument
mpos = find(strcmp('--model', cellarray));
if isempty(mpos)
error('dcontrib::positions: --model argument is mandatory.')
elseif length(mpos)>1
error('dplot::positions: Only one --model argument is allowed.')
end
% Index for --tags argument
vpos = find(strcmp('--tags', cellarray));
if isempty(vpos)
error('dplot::positions: --tags argument is mandatory.')
elseif length(vpos)>1
error('dplot::positions: Only one --tags argument is allowed.')
end
% Index for the --initialconditions argument
dpos = find(strcmp('--database', cellarray));
if isempty(dpos)
error('dplot::positions: --database argument is mandatory.')
elseif length(dpos)>1
error('dplot::positions: Only one --database argument is allowed.')
end
% Index for the --range argument
rpos = find(strcmp('--range', cellarray));
if length(rpos)>1
error('dplot::positions: Only one --range argument is allowed.')
end
% Index for the --baseline argument
bpos = find(strcmp('--baseline', cellarray));
if length(bpos)>1
error('dplot::positions: Only one --baseline argument is allowed.')
end
if ~isempty(rpos) && ~isempty(bpos)
error('dplot::positions: --baseline and --range arguments are not allowed simultaneously.')
end
% Index for the --output argument.
opos = find(strcmp('--output', cellarray));
if isempty(opos)
error('dplot::positions: --output argument is mandatory.')
elseif length(opos)>1
error('dplot::positions: Only one --periods argument is allowed.')
end
% Index for --method argument
kpos = find(strcmp('--method', cellarray));
if length(kpos)>1
error('dplot::positions: Only one --method argument is allowed.')
end
% Index for --log option
lpos = find(strcmp('--log', cellarray));
if length(lpos)>1
warning('dplot::positions: There is no point in using --log more than once.')
end
% Sorted vector of indices
indices = sort([mpos; vpos; dpos; rpos; bpos; opos; kpos; lpos]);
end
|