| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 
 | function myoutput = posterior_sampler_core(myinputs,fblck,nblck,whoiam, ThisMatlab)
% function myoutput = posterior_sampler_core(myinputs,fblck,nblck,whoiam, ThisMatlab)
% Contains the most computationally intensive portion of code in
% posterior_sampler (the 'for xxx = fblck:nblck' loop). The branches in  that 'for'
% cycle are completely independent to be suitable for parallel execution.
%
% INPUTS
%   o myimput            [struc]     The mandatory variables for local/remote
%                                    parallel computing obtained from posterior_sampler.m
%                                    function.
%   o fblck and nblck    [integer]   The Metropolis-Hastings chains.
%   o whoiam             [integer]   In concurrent programming a modality to refer to the different threads running in parallel is needed.
%                                    The integer whoaim is the integer that
%                                    allows us to distinguish between them. Then it is the index number of this CPU among all CPUs in the
%                                    cluster.
%   o ThisMatlab         [integer]   Allows us to distinguish between the
%                                    'main' Matlab, the slave Matlab worker, local Matlab, remote Matlab,
%                                     ... Then it is the index number of this slave machine in the cluster.
% OUTPUTS
%   o myoutput  [struc]
%               If executed without parallel, this is the original output of 'for b =
%               fblck:nblck'. Otherwise, it's a portion of it computed on a specific core or
%               remote machine. In this case:
%                               record;
%                               irun;
%                               NewFile;
%                               OutputFileName
%
% ALGORITHM
%   Portion of Posterior Sampler.
%
% SPECIAL REQUIREMENTS.
%   None.
%
% PARALLEL CONTEXT
% See the comments in the posterior_sampler.m funtion.
% Copyright © 2006-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
if nargin<4
    whoiam=0;
end
% reshape 'myinputs' for local computation.
% In order to avoid confusion in the name space, the instruction struct2local(myinputs) is replaced by:
TargetFun=myinputs.TargetFun;
ProposalFun=myinputs.ProposalFun;
xparam1=myinputs.xparam1;
mh_bounds=myinputs.mh_bounds;
last_draw=myinputs.ix2;
last_posterior=myinputs.ilogpo2;
fline=myinputs.fline;
npar=myinputs.npar;
nruns=myinputs.nruns;
NewFile=myinputs.NewFile;
MAX_nruns=myinputs.MAX_nruns;
sampler_options=myinputs.sampler_options;
d=myinputs.d;
InitSizeArray=myinputs.InitSizeArray;
record=myinputs.record;
dataset_ = myinputs.dataset_;
dataset_info = myinputs.dataset_info;
bayestopt_ = myinputs.bayestopt_;
estim_params_ = myinputs.estim_params_;
options_ = myinputs.options_;
M_ = myinputs.M_;
dr = myinputs.dr;
endo_steady_state = myinputs.endo_steady_state;
exo_steady_state=myinputs.exo_steady_state;
exo_det_steady_state=myinputs.exo_det_steady_state;
% Necessary only for remote computing!
if whoiam
    % initialize persistent variables in priordens()
    priordens(xparam1,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7, bayestopt_.p3,bayestopt_.p4,1);
end
MetropolisFolder = CheckPath('metropolis',M_.dname);
ModelName = M_.fname;
BaseName = [MetropolisFolder filesep ModelName];
save_tmp_file = sampler_options.save_tmp_file;
OpenOldFile = ones(nblck,1);
if strcmpi(ProposalFun,'rand_multivariate_normal')
    sampler_options.n = npar;
    sampler_options.ProposalDensity = 'multivariate_normal_pdf';
elseif strcmpi(ProposalFun,'rand_multivariate_student')
    sampler_options.n = sampler_options.student_degrees_of_freedom;
    sampler_options.ProposalDensity = 'multivariate_student_pdf';
end
%
% Now I run the (nblck-fblck+1) MCMC chains
%
sampler_options.xparam1 = xparam1;
if ~isempty(d)
    sampler_options.proposal_covariance_Cholesky_decomposition = d*diag(bayestopt_.jscale);
    %store information for load_mh_file
    record.ProposalCovariance=d;
    record.ProposalScaleVec=bayestopt_.jscale;
end
block_iter=0;
for curr_block = fblck:nblck
    LastSeeds=[];
    block_iter=block_iter+1;
    try
        % This will not work if the master uses a random number generator not
        % available in the slave (different Matlab version or
        % Matlab/Octave cluster). Therefore the trap.
        %
        % Set the random number generator type (the seed is useless but needed by the function)
        if ~isoctave
            options_=set_dynare_seed_local_options(options_,options_.DynareRandomStreams.algo, options_.DynareRandomStreams.seed);
        else
            options_=set_dynare_seed_local_options(options_,options_.DynareRandomStreams.seed+curr_block);
        end
        % Set the state of the RNG
        set_dynare_random_generator_state(record.InitialSeeds(curr_block).Unifor, record.InitialSeeds(curr_block).Normal);
    catch
        % If the state set by master is incompatible with the slave, we only reseed
        options_=set_dynare_seed_local_options(options_,options_.DynareRandomStreams.seed+curr_block);
    end
    mh_recover_flag=0;
    if options_.mh_recover && exist([BaseName '_mh_tmp_blck' int2str(curr_block) '.mat'],'file')==2 && OpenOldFile(curr_block)
        % this should be done whatever value of load_mh_file
        load([BaseName '_mh_tmp_blck' int2str(curr_block) '.mat']);
        draw_iter = size(neval_this_chain,2)+1;
        draw_index_current_file = draw_iter+fline(curr_block)-1;
        feval_this_chain = sum(sum(neval_this_chain));
        feval_this_file = sum(sum(neval_this_chain));
        if feval_this_chain>draw_index_current_file-fline(curr_block)
            % non Metropolis type of sampler
            accepted_draws_this_chain = draw_index_current_file-fline(curr_block);
            accepted_draws_this_file = draw_index_current_file-fline(curr_block);
        else
            accepted_draws_this_chain = 0;
            accepted_draws_this_file = 0;
        end
        mh_recover_flag=1;
        set_dynare_random_generator_state(LastSeeds.(['file' int2str(NewFile(curr_block))]).Unifor, LastSeeds.(['file' int2str(NewFile(curr_block))]).Normal);
        last_draw(curr_block,:)=x2(draw_index_current_file-1,:);
        last_posterior(curr_block)=logpo2(draw_index_current_file-1);
        OpenOldFile(curr_block) = 0;
    else
        if (options_.load_mh_file~=0) && (fline(curr_block)>1) && OpenOldFile(curr_block) %load previous draws and likelihood
            load([BaseName '_mh' int2str(NewFile(curr_block)) '_blck' int2str(curr_block) '.mat'])
            x2 = [x2;zeros(InitSizeArray(curr_block)-fline(curr_block)+1,npar)];
            logpo2 = [logpo2;zeros(InitSizeArray(curr_block)-fline(curr_block)+1,1)];
            OpenOldFile(curr_block) = 0;
        else
            x2 = zeros(InitSizeArray(curr_block),npar);
            logpo2 = zeros(InitSizeArray(curr_block),1);
        end
    end
    if mh_recover_flag==0
        accepted_draws_this_chain = 0;
        accepted_draws_this_file = 0;
        feval_this_chain = 0;
        feval_this_file = 0;
        draw_iter = 1;
        draw_index_current_file = fline(curr_block); %get location of first draw in current block
    end
    %Prepare waiting bars
    if whoiam
        refresh_rate = sampler_options.parallel_bar_refresh_rate;
        bar_title = sampler_options.parallel_bar_title;
        prc0=(curr_block-fblck)/(nblck-fblck+1)*(isoctave || options_.console_mode)+(draw_iter-1)/nruns(curr_block);
        hh_fig = dyn_waitbar({prc0,whoiam,options_.parallel(ThisMatlab)},[bar_title ' (' int2str(curr_block) '/' int2str(options_.mh_nblck) ')...']);
    else
        refresh_rate = sampler_options.serial_bar_refresh_rate;
        bar_title = sampler_options.serial_bar_title;
        hh_fig = dyn_waitbar(0,[bar_title ' (' int2str(curr_block) '/' int2str(options_.mh_nblck) ')...']);
        set(hh_fig,'Name',bar_title);
    end
    sampler_options.curr_block = curr_block;
    while draw_iter <= nruns(curr_block)
        [par, logpost, accepted, neval] = posterior_sampler_iteration(TargetFun, last_draw(curr_block,:), last_posterior(curr_block), sampler_options,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,mh_bounds,dr, endo_steady_state, exo_steady_state, exo_det_steady_state);
        x2(draw_index_current_file,:) = par;
        last_draw(curr_block,:) = par;
        logpo2(draw_index_current_file) = logpost;
        last_posterior(curr_block) = logpost;
        neval_this_chain(:, draw_iter) = neval;
        feval_this_chain = feval_this_chain + sum(neval);
        feval_this_file = feval_this_file + sum(neval);
        accepted_draws_this_chain = accepted_draws_this_chain + accepted;
        accepted_draws_this_file = accepted_draws_this_file + accepted;
        prtfrc = draw_iter/nruns(curr_block);
        if mod(draw_iter, refresh_rate)==0
            if accepted_draws_this_chain/draw_iter==1 && sum(neval)>1
                dyn_waitbar(prtfrc,hh_fig,[bar_title ' (' int2str(curr_block) '/' int2str(options_.mh_nblck) ') ' sprintf('Function eval per draw %4.3f', feval_this_chain/draw_iter)]);
            else
                dyn_waitbar(prtfrc,hh_fig,[bar_title ' (' int2str(curr_block) '/' int2str(options_.mh_nblck) ') ' sprintf('Current acceptance ratio %4.3f', accepted_draws_this_chain/draw_iter)]);
            end
            if save_tmp_file
                [LastSeeds.(['file' int2str(NewFile(curr_block))]).Unifor, LastSeeds.(['file' int2str(NewFile(curr_block))]).Normal] = get_dynare_random_generator_state();
                save([BaseName '_mh_tmp_blck' int2str(curr_block) '.mat'],'x2','logpo2','LastSeeds','neval_this_chain','accepted_draws_this_chain','accepted_draws_this_file','feval_this_chain','feval_this_file');
            end
        end
        if (draw_index_current_file == InitSizeArray(curr_block)) || (draw_iter == nruns(curr_block)) % Now I save the simulations, either because the current file is full or the chain is done
            [LastSeeds.(['file' int2str(NewFile(curr_block))]).Unifor, LastSeeds.(['file' int2str(NewFile(curr_block))]).Normal] = get_dynare_random_generator_state();
            if save_tmp_file
                delete([BaseName '_mh_tmp_blck' int2str(curr_block) '.mat']);
            end
            save([BaseName '_mh' int2str(NewFile(curr_block)) '_blck' int2str(curr_block) '.mat'],'x2','logpo2','LastSeeds','accepted_draws_this_chain','accepted_draws_this_file','feval_this_chain','feval_this_file');
            fidlog = fopen([MetropolisFolder '/metropolis.log'],'a');
            fprintf(fidlog,'\n');
            fprintf(fidlog,['%% Mh' int2str(NewFile(curr_block)) 'Blck' int2str(curr_block) ' (' datestr(now,0) ')\n']);
            fprintf(fidlog,' \n');
            fprintf(fidlog,['  Number of simulations.: ' int2str(length(logpo2)) '\n']);
            fprintf(fidlog,['  Acceptance ratio......: ' num2str(accepted_draws_this_file/length(logpo2)) '\n']);
            fprintf(fidlog,['  Feval per iteration...: ' num2str(feval_this_file/length(logpo2)) '\n']);
            fprintf(fidlog,'  Posterior mean........:\n');
            for i=1:length(x2(1,:))
                fprintf(fidlog,['    params:' int2str(i) ': ' num2str(mean(x2(:,i))) '\n']);
            end
            fprintf(fidlog,['    log2po:' num2str(mean(logpo2)) '\n']);
            fprintf(fidlog,'  Minimum value.........:\n');
            for i=1:length(x2(1,:))
                fprintf(fidlog,['    params:' int2str(i) ': ' num2str(min(x2(:,i))) '\n']);
            end
            fprintf(fidlog,['    log2po:' num2str(min(logpo2)) '\n']);
            fprintf(fidlog,'  Maximum value.........:\n');
            for i=1:length(x2(1,:))
                fprintf(fidlog,['    params:' int2str(i) ': ' num2str(max(x2(:,i))) '\n']);
            end
            fprintf(fidlog,['    log2po:' num2str(max(logpo2)) '\n']);
            fprintf(fidlog,' \n');
            fclose(fidlog);
            accepted_draws_this_file = 0;
            feval_this_file = 0;
            if draw_iter == nruns(curr_block) % I record the last draw...
                record.LastParameters(curr_block,:) = x2(end,:);
                record.LastLogPost(curr_block) = logpo2(end);
            end
            % size of next file in chain curr_block
            InitSizeArray(curr_block) = min(nruns(curr_block)-draw_iter,MAX_nruns);
            % initialization of next file if necessary
            if InitSizeArray(curr_block)
                x2 = zeros(InitSizeArray(curr_block),npar);
                logpo2 = zeros(InitSizeArray(curr_block),1);
                NewFile(curr_block) = NewFile(curr_block) + 1;
                draw_index_current_file = 0;
            end
        end
        draw_iter=draw_iter+1;
        draw_index_current_file = draw_index_current_file + 1;
    end % End of the simulations for one mh-block.
    dyn_waitbar_close(hh_fig);
    if nruns(curr_block)
        record.AcceptanceRatio(curr_block) = accepted_draws_this_chain/(draw_iter-1);
        record.FunctionEvalPerIteration(curr_block) = feval_this_chain/(draw_iter-1);
        [record.LastSeeds(curr_block).Unifor, record.LastSeeds(curr_block).Normal] = get_dynare_random_generator_state();
    end
    OutputFileName(block_iter,:) = {[MetropolisFolder,filesep], [ModelName '_mh*_blck' int2str(curr_block) '.mat']};
end % End of the loop over the mh-blocks.
myoutput.record = record;
myoutput.irun = draw_index_current_file;
myoutput.NewFile = NewFile;
myoutput.OutputFileName = OutputFileName;
 |