1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
|
function [alphahat,etahat,epsilonhat,ahat,SteadyState,trend_coeff,aK,T,R,P,PK,decomp,trend_addition,state_uncertainty,oo_,bayestopt_,alphahat0,state_uncertainty0,d] = DsgeSmoother(xparam1,gend,Y,data_index,missing_value,M_,oo_,options_,bayestopt_,estim_params_,varargin)
% [alphahat,etahat,epsilonhat,ahat,SteadyState,trend_coeff,aK,T,R,P,PK,decomp,trend_addition,state_uncertainty,oo_,bayestopt_,alphahat0,state_uncertainty0,d] = DsgeSmoother(xparam1,gend,Y,data_index,missing_value,M_,oo_,options_,bayestopt_,estim_params_,varargin)
% Estimation of the smoothed variables and innovations.
%
% INPUTS
% o xparam1 [double] (p*1) vector of (estimated) parameters.
% o gend [integer] scalar specifying the number of observations ==> varargin{1}.
% o Y [double] (n*T) matrix of data.
% o data_index [cell] 1*smpl cell of column vectors of indices.
% o missing_value 1 if missing values, 0 otherwise
% o M_ [structure] decribing the model
% o oo_ [structure] storing the results
% o options_ [structure] describing the options
% o bayestopt_ [structure] describing the priors
% o estim_params_ [structure] characterizing parameters to be estimated
%
% OUTPUTS
% o alphahat [double] (m*T) matrix, smoothed endogenous variables (a_{t|T}) (decision-rule order)
% o etahat [double] (r*T) matrix, smoothed structural shocks (r>=n is the number of shocks).
% o epsilonhat [double] (n*T) matrix, smoothed measurement errors.
% o ahat [double] (m*T) matrix, updated (endogenous) variables (a_{t|t}) (decision-rule order)
% o SteadyState [double] (m*1) vector specifying the steady state level of each endogenous variable (declaration order)
% o trend_coeff [double] (n*1) vector, parameters specifying the slope of the trend associated to each observed variable.
% o aK [double] (K,n,T+K) array, k (k=1,...,K) steps ahead
% filtered (endogenous) variables (decision-rule order)
% o T and R [double] Matrices defining the state equation (T is the (m*m) transition matrix).
% o P: (m*m*(T+1)) 3D array of one-step ahead forecast error variance
% matrices (decision-rule order)
% o PK: (K*m*m*(T+K)) 4D array of k-step ahead forecast error variance
% matrices (meaningless for periods 1:d) (decision-rule order)
% o decomp (K*m*r*(T+K)) 4D array of shock decomposition of k-step ahead
% filtered variables (decision-rule order)
% o trend_addition [double] (n*T) pure trend component; stored in options_.varobs order
% o state_uncertainty [double] (K,K,T) array, storing the uncertainty
% about the smoothed state (decision-rule order)
% o oo_ [structure] storing the results
% o bayestopt_ [structure] describing the priors
%
% Notes:
% m: number of endogenous variables (M_.endo_nbr)
% T: number of Time periods (options_.nobs)
% r: number of strucural shocks (M_.exo_nbr)
% n: number of observables (length(options_.varobs))
% K: maximum forecast horizon (max(options_.nk))
%
% To get variables that are stored in decision rule order in order of declaration
% as in M_.endo_names, ones needs code along the lines of:
% variables_declaration_order(dr.order_var,:) = alphahat
%
% Defines bayestopt_.mf = bayestopt_.smoother_mf (positions of observed variables
% and requested smoothed variables in decision rules (decision rule order)) and
% passes it back via global variable
%
% ALGORITHM
% Diffuse Kalman filter (Durbin and Koopman)
%
% SPECIAL REQUIREMENTS
% None
% Copyright © 2006-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
alphahat = [];
etahat = [];
epsilonhat = [];
ahat = [];
SteadyState = [];
trend_coeff = [];
aK = [];
T = [];
R = [];
P = [];
PK = [];
decomp = [];
vobs = length(options_.varobs);
smpl = size(Y,2);
if ~isempty(xparam1) %not calibrated model
M_ = set_all_parameters(xparam1,estim_params_,M_);
end
%------------------------------------------------------------------------------
% 2. call model setup & reduction program
%------------------------------------------------------------------------------
length_varargin=length(varargin);
if ~options_.smoother_redux
%store old setting of restricted var_list
oldoo.restrict_var_list = oo_.dr.restrict_var_list;
oldoo.restrict_columns = oo_.dr.restrict_columns;
oo_.dr.restrict_var_list = bayestopt_.smoother_var_list;
oo_.dr.restrict_columns = bayestopt_.smoother_restrict_columns;
[T,R,SteadyState,info,oo_.dr,M_.params] = dynare_resolve(M_,options_,oo_.dr,oo_.steady_state,oo_.exo_steady_state,oo_.exo_det_steady_state);
%get location of observed variables and requested smoothed variables in
%decision rules
bayestopt_.mf = bayestopt_.smoother_var_list(bayestopt_.smoother_mf);
else
if ~options_.occbin.smoother.status
[T,R,SteadyState,info,oo_.dr,M_.params] = dynare_resolve(M_,options_,oo_.dr,oo_.steady_state,oo_.exo_steady_state,oo_.exo_det_steady_state,'restrict');
else
[T,R,SteadyState,info,oo_.dr, M_.params,~,~,~, T0, R0] = ...
occbin.dynare_resolve(M_,options_,oo_.dr, oo_.steady_state, oo_.exo_steady_state, oo_.exo_det_steady_state,[],'restrict');
varargin{length_varargin+1}=T0;
varargin{length_varargin+2}=R0;
end
bayestopt_.mf = bayestopt_.mf1;
end
if options_.occbin.smoother.status
occbin_info.status = true;
occbin_info.info= [{options_,oo_.dr,oo_.steady_state,oo_.exo_steady_state,oo_.exo_det_steady_state,M_} varargin];
else
occbin_info.status = false;
end
if info~=0
print_info(info,options_.noprint, options_);
return
end
if options_.noconstant
constant = zeros(vobs,1);
else
if options_.loglinear
constant = log(SteadyState(bayestopt_.mfys));
else
constant = SteadyState(bayestopt_.mfys);
end
end
trend_coeff = zeros(vobs,1);
if bayestopt_.with_trend == 1
[trend_addition, trend_coeff] =compute_trend_coefficients(M_,options_,vobs,gend);
trend = constant*ones(1,gend)+trend_addition;
else
trend_addition=zeros(size(constant,1),gend);
trend = constant*ones(1,gend);
end
np = size(T,1);
mf = bayestopt_.mf;
% ------------------------------------------------------------------------------
% 3. Initial condition of the Kalman filter
% ------------------------------------------------------------------------------
%
% Here, Pinf and Pstar are determined. If the model is stationary, determine
% Pstar as the solution of the Lyapunov equation and set Pinf=[] (Notation follows
% Koopman/Durbin (2003), Journal of Time Series Analysis 24(1))
%
Q = M_.Sigma_e;
H = M_.H;
if isequal(H,0)
H = zeros(vobs,vobs);
end
Z = zeros(vobs,size(T,2));
for i=1:vobs
Z(i,mf(i)) = 1;
end
expanded_state_vector_for_univariate_filter=0;
kalman_algo = options_.kalman_algo;
if options_.lik_init == 1 % Kalman filter
if kalman_algo ~= 2
kalman_algo = 1;
end
Pstar=lyapunov_solver(T,R,Q,options_);
Pinf = [];
elseif options_.lik_init == 2 % Old Diffuse Kalman filter
if kalman_algo ~= 2
kalman_algo = 1;
end
Pstar = options_.Harvey_scale_factor*eye(np);
Pinf = [];
elseif options_.lik_init == 3 % Diffuse Kalman filter
my_mf = mf;
if kalman_algo ~= 4
kalman_algo = 3;
else
if ~all(all(abs(H-diag(diag(H)))<1e-14))% ie, the covariance matrix is not diagonal...
%Augment state vector (follows Section 6.4.3 of DK (2012))
expanded_state_vector_for_univariate_filter=1;
T = blkdiag(T,zeros(vobs));
np = size(T,1);
Q = blkdiag(Q,H);
R = blkdiag(R,eye(vobs));
H = zeros(vobs,vobs);
Z = [Z, eye(vobs)];
my_mf = find(any(Z))';
end
end
[Pstar,Pinf] = compute_Pinf_Pstar(my_mf,T,R,Q,options_.qz_criterium);
elseif options_.lik_init == 4 % Start from the solution of the Riccati equation.
Pstar = kalman_steady_state(transpose(T),R*Q*transpose(R),transpose(build_selection_matrix(mf,np,vobs)),H);
Pinf = [];
if kalman_algo~=2
kalman_algo = 1;
end
elseif options_.lik_init == 5 % Old diffuse Kalman filter only for the non stationary variables
[eigenvect, eigenv] = eig(T);
eigenv = diag(eigenv);
nstable = length(find(abs(abs(eigenv)-1) > 1e-7));
unstable = find(abs(abs(eigenv)-1) < 1e-7);
V = eigenvect(:,unstable);
indx_unstable = find(sum(abs(V),2)>1e-5);
stable = find(sum(abs(V),2)<1e-5);
nunit = length(eigenv) - nstable;
Pstar = options_.Harvey_scale_factor*eye(np);
if kalman_algo ~= 2
kalman_algo = 1;
end
R_tmp = R(stable, :);
T_tmp = T(stable,stable);
Pstar_tmp=lyapunov_solver(T_tmp,R_tmp,Q,options_);
Pstar(stable, stable) = Pstar_tmp;
Pinf = [];
end
kalman_tol = options_.kalman_tol;
diffuse_kalman_tol = options_.diffuse_kalman_tol;
riccati_tol = options_.riccati_tol;
data1 = Y-trend;
% -----------------------------------------------------------------------------
% 4. Kalman smoother
% -----------------------------------------------------------------------------
if ~missing_value
for i=1:smpl
data_index{i}=(1:vobs)';
end
end
ST = T;
R1 = R;
if options_.heteroskedastic_filter
Q=get_Qvec_heteroskedastic_filter(Q,smpl,M_);
end
if options_.occbin.smoother.status
if kalman_algo == 1
kalman_algo = 2;
end
if kalman_algo == 3
kalman_algo = 4;
end
end
if kalman_algo == 1 || kalman_algo == 3
a_initial = zeros(np,1);
a_initial=set_Kalman_smoother_starting_values(a_initial,M_,oo_,options_);
a_initial=T*a_initial; %set state prediction for first Kalman step;
[alphahat,epsilonhat,etahat,ahat,P,aK,PK,decomp,state_uncertainty, aahat, eehat, d, alphahat0, aalphahat0, state_uncertainty0] = missing_DiffuseKalmanSmootherH1_Z(a_initial,ST, ...
Z,R1,Q,H,Pinf,Pstar, ...
data1,vobs,np,smpl,data_index, ...
options_.nk,kalman_tol,diffuse_kalman_tol,options_.filter_decomposition,options_.smoothed_state_uncertainty,options_.filter_covariance,options_.smoother_redux);
if isinf(alphahat)
if kalman_algo == 1
fprintf('\nDsgeSmoother: Switching to univariate filter. This may be a sign of stochastic singularity.\n')
kalman_algo = 2;
elseif kalman_algo == 3
fprintf('\nDsgeSmoother: Switching to univariate filter. This is usually due to co-integration in diffuse filter,\n')
fprintf('otherwise it may be a sign of stochastic singularity.\n')
kalman_algo = 4;
else
error('This case shouldn''t happen')
end
end
end
if kalman_algo == 2 || kalman_algo == 4
if ~all(all(abs(H-diag(diag(H)))<1e-14))% ie, the covariance matrix is diagonal...
if ~expanded_state_vector_for_univariate_filter
%Augment state vector (follows Section 6.4.3 of DK (2012))
expanded_state_vector_for_univariate_filter=1;
Z = [Z, eye(vobs)];
ST = blkdiag(ST,zeros(vobs));
np = size(ST,1);
if options_.heteroskedastic_filter
Qvec=Q;
Q=NaN(size(Qvec,1)+size(H,1),size(Qvec,1)+size(H,1),smpl+1);
for kv=1:size(Qvec,3)
Q(:,:,kv) = blkdiag(Qvec(:,:,kv),H);
end
else
Q = blkdiag(Q,H);
end
R1 = blkdiag(R,eye(vobs));
if kalman_algo == 4
%recompute Schur state space transformation with
%expanded state space
[Pstar,Pinf] = compute_Pinf_Pstar(mf,ST,R1,Q,options_.qz_criterium);
else
Pstar = blkdiag(Pstar,H);
if ~isempty(Pinf)
Pinf = blkdiag(Pinf,zeros(vobs));
end
end
%now reset H to 0
H = zeros(vobs,vobs);
else
%do nothing, state vector was already expanded
end
end
a_initial = zeros(np,1);
a_initial=set_Kalman_smoother_starting_values(a_initial,M_,oo_,options_);
a_initial=ST*a_initial; %set state prediction for first Kalman step;
[alphahat,epsilonhat,etahat,ahat,P,aK,PK,decomp,state_uncertainty, aahat, eehat, d, alphahat0, aalphahat0, state_uncertainty0, regimes_,TT,RR,CC,TTx,RRx,CCx] = missing_DiffuseKalmanSmootherH3_Z(a_initial,ST, ...
Z,R1,Q,diag(H), ...
Pinf,Pstar,data1,vobs,np,smpl,data_index, ...
options_.nk,kalman_tol,diffuse_kalman_tol, ...
options_.filter_decomposition,options_.smoothed_state_uncertainty,options_.filter_covariance,options_.smoother_redux,occbin_info);
if options_.occbin.smoother.status
oo_.occbin.smoother.regime_history = regimes_;
end
end
if expanded_state_vector_for_univariate_filter && (kalman_algo == 2 || kalman_algo == 4)
% extracting measurement errors
% removing observed variables from the state vector
k = (1:np-vobs);
alphahat = alphahat(k,:);
ahat = ahat(k,:);
aK = aK(:,k,:,:);
epsilonhat=etahat(end-vobs+1:end,:);
etahat=etahat(1:end-vobs,:);
if ~isempty(PK)
PK = PK(:,k,k,:);
end
if ~isempty(decomp)
decomp = decomp(:,k,:,:);
end
if ~isempty(P)
P = P(k,k,:);
end
if ~isempty(state_uncertainty)
state_uncertainty = state_uncertainty(k,k,:);
end
end
if ~options_.smoother_redux
%reset old setting of restricted var_list
oo_.dr.restrict_var_list = oldoo.restrict_var_list;
oo_.dr.restrict_columns = oldoo.restrict_columns;
else
ic = [ M_.nstatic+(1:M_.nspred) M_.endo_nbr+(1:size(oo_.dr.ghx,2)-M_.nspred) ]';
if isempty(options_.nk)
nk=1;
else
nk=options_.nk;
end
if options_.occbin.smoother.status
% reconstruct occbin smoother
if length_varargin>0
% sequence of regimes is provided in input
isoccbin=1;
else
isoccbin=0;
end
if length_varargin>1
TT=varargin{2};
RR=varargin{3};
CC=varargin{4};
if size(TT,3)<(smpl+1)
TT=repmat(T,1,1,smpl+1);
RR=repmat(R,1,1,smpl+1);
CC=repmat(zeros(size(T,1),1),1,smpl+1);
end
end
if isoccbin==0
[A,B] = kalman_transition_matrix(oo_.dr,(1:M_.endo_nbr)',ic);
else
opts_simul = options_.occbin.simul;
end
% reconstruct smoothed variables
aaa=zeros(M_.endo_nbr,gend+1);
aaa(oo_.dr.restrict_var_list,1)=alphahat0;
aaa(oo_.dr.restrict_var_list,2:end)=alphahat;
iTx = zeros(size(TTx));
for k=1:gend
if isoccbin
A = TT(:,:,k);
B = RR(:,:,k);
C = CC(:,k);
else
C=0;
end
iT = pinv(TTx(:,:,k));
% store pinv
iTx(:,:,k) = iT;
Tstar = A(~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list),oo_.dr.restrict_var_list);
Rstar = B(~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list),:);
Cstar = C(~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list));
AS = Tstar*iT;
BS = Rstar-AS*RRx(:,:,k);
CS = Cstar-AS*CCx(:,k);
static_var_list = ~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list);
ilagged = any(abs(AS*TTx(:,:,k)-Tstar)'>1.e-12);
static_var_list0 = static_var_list;
static_var_list0(static_var_list) = ilagged;
static_var_list(static_var_list) = ~ilagged;
aaa(static_var_list,k+1) = AS(~ilagged,:)*alphahat(:,k)+BS(~ilagged,:)*etahat(:,k)+CS(~ilagged);
if any(ilagged)
if k>1
aaa(static_var_list0,k+1) = Tstar(ilagged,:)*alphahat(:,k-1)+Rstar(ilagged,:)*etahat(:,k)+Cstar(ilagged);
else
aaa(static_var_list0,2) = Tstar(ilagged,:)*alphahat0+Rstar(ilagged,:)*etahat(:,1)+Cstar(ilagged);
end
end
end
alphahat0=aaa(:,1);
alphahat=aaa(:,2:end);
% reconstruct updated variables
bbb=zeros(M_.endo_nbr,gend);
bbb(oo_.dr.restrict_var_list,:)=ahat; % this is t|t
for k=1:gend
if isoccbin
A = TT(:,:,k);
B = RR(:,:,k);
C = CC(:,k);
iT = iTx(:,:,k);
Tstar = A(~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list),oo_.dr.restrict_var_list);
Rstar = B(~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list),:);
Cstar = C(~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list));
AS = Tstar*iT;
BS = Rstar-AS*RRx(:,:,k);
CS = Cstar-AS*CCx(:,k);
static_var_list = ~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list);
ilagged = any(abs(AS*TTx(:,:,k)-Tstar)'>1.e-12);
static_var_list0 = static_var_list;
static_var_list0(static_var_list) = ilagged;
static_var_list(static_var_list) = ~ilagged;
bbb(static_var_list,k) = AS(~ilagged,:)*ahat(:,k)+BS(~ilagged,:)*eehat(:,k)+CS(~ilagged);
if any(ilagged) && k>d+1
bbb(static_var_list0,k) = Tstar(ilagged,:)*aahat(:,k-1)+Rstar(ilagged,:)*eehat(:,k)+Cstar(ilagged);
end
elseif k>d+1
opts_simul.curb_retrench = options_.occbin.smoother.curb_retrench;
opts_simul.waitbar = options_.occbin.smoother.waitbar;
opts_simul.maxit = options_.occbin.smoother.maxit;
opts_simul.periods = options_.occbin.smoother.periods;
opts_simul.check_ahead_periods = options_.occbin.smoother.check_ahead_periods;
opts_simul.full_output = options_.occbin.smoother.full_output;
opts_simul.piecewise_only = options_.occbin.smoother.piecewise_only;
opts_simul.SHOCKS = zeros(nk,M_.exo_nbr);
opts_simul.SHOCKS(1,:) = eehat(:,k);
tmp=zeros(M_.endo_nbr,1);
tmp(oo_.dr.restrict_var_list,1)=aahat(:,k-1);
opts_simul.endo_init = tmp(oo_.dr.inv_order_var,1);
opts_simul.init_regime = []; %regimes_(k);
opts_simul.waitbar=0;
options_.occbin.simul=opts_simul;
[~, out] = occbin.solver(M_,options_,oo_.dr,oo_.steady_state,oo_.exo_steady_state,oo_.exo_det_steady_state);
% regime in out should be identical to regimes_(k-2) moved one
% period ahead (so if regimestart was [1 5] it should be [1 4]
% in out
% end
bbb(oo_.dr.inv_order_var,k) = out.piecewise(1,:) - out.ys';
end
end
ahat0=ahat;
ahat=bbb;
if ~isempty(P)
PP=zeros(M_.endo_nbr,M_.endo_nbr,gend+1);
PP(oo_.dr.restrict_var_list,oo_.dr.restrict_var_list,:)=P;
P=PP;
clear PP
end
if ~isempty(state_uncertainty)
mm=size(T,1);
sstate_uncertainty=zeros(M_.endo_nbr,M_.endo_nbr,gend);
sstate_uncertainty(oo_.dr.restrict_var_list,oo_.dr.restrict_var_list,:)=state_uncertainty(1:mm,1:mm,:);
state_uncertainty=sstate_uncertainty;
clear sstate_uncertainty
end
if ~isempty(state_uncertainty0)
mm=size(T,1);
sstate_uncertainty=zeros(M_.endo_nbr,M_.endo_nbr);
sstate_uncertainty(oo_.dr.restrict_var_list,oo_.dr.restrict_var_list)=state_uncertainty0(1:mm,1:mm);
state_uncertainty0=sstate_uncertainty;
clear sstate_uncertainty
end
aaa = zeros(nk,M_.endo_nbr,gend+nk);
aaa(:,oo_.dr.restrict_var_list,:)=aK;
if isoccbin
tstart = 1;
else
% we enter here in the first occbin smoother iteration
% occbin kalman update is not yet able to accommodate diffuse steps!
tstart=d+2;
end
for k=2:gend+1
opts_simul.curb_retrench = options_.occbin.smoother.curb_retrench;
opts_simul.waitbar = options_.occbin.smoother.waitbar;
opts_simul.maxit = options_.occbin.smoother.maxit;
opts_simul.periods = options_.occbin.smoother.periods;
opts_simul.check_ahead_periods = options_.occbin.smoother.check_ahead_periods;
opts_simul.full_output = options_.occbin.smoother.full_output;
opts_simul.piecewise_only = options_.occbin.smoother.piecewise_only;
opts_simul.SHOCKS = zeros(nk,M_.exo_nbr);
tmp=zeros(M_.endo_nbr,1);
tmp(oo_.dr.restrict_var_list,1)=ahat0(:,k-1);
opts_simul.endo_init = tmp(oo_.dr.inv_order_var,1);
opts_simul.init_regime = []; %regimes_(k);
opts_simul.waitbar=0;
options_.occbin.simul=opts_simul;
[~, out] = occbin.solver(M_,options_,oo_.dr,oo_.steady_state,oo_.exo_steady_state,oo_.exo_det_steady_state);
% regime in out should be identical to regimes_(k-2) moved one
% period ahead (so if regimestart was [1 5] it should be [1 4]
% in out
% end
if out.error_flag==0
for jnk=1:nk
aaa(jnk,oo_.dr.inv_order_var,k+jnk-1) = out.piecewise(jnk,:) - out.ys';
end
elseif k>tstart
% the issue only matters non-stationary models, with
% diffuse filter, and for the first occbin smoother iteration,
% where tstart>1
%
% if k>tstart, the same simulation should have been done
% already in occbin.kalman_update, so it should never give
% an error
%
% if k<=tstart, the simulation may crash, since we ignore OBC in the first (diffuse) steps
% and it may happen that, given the linear updated states,
% the occbin simulation does not converge
error('this error should not occur, please contact the developers!')
end
end
aK=aaa;
if ~isempty(PK)
PP = zeros(nk,M_.endo_nbr,M_.endo_nbr,gend+nk);
PP(:,oo_.dr.restrict_var_list,oo_.dr.restrict_var_list,:) = PK;
PK=PP;
clear PP
end
else
% reconstruct smoother
[A,B] = kalman_transition_matrix(oo_.dr,(1:M_.endo_nbr)',ic);
iT = pinv(T);
Tstar = A(~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list),oo_.dr.restrict_var_list);
Rstar = B(~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list),:);
C = Tstar*iT;
D = Rstar-C*R;
static_var_list = ~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list);
ilagged = any(abs(C*T-Tstar)'>1.e-12);
static_var_list0 = static_var_list;
static_var_list0(static_var_list) = ilagged;
static_var_list(static_var_list) = ~ilagged;
% reconstruct smoothed variables
aaa=zeros(M_.endo_nbr,gend+1);
if ~isempty(alphahat0)
aaa(oo_.dr.restrict_var_list,1)=alphahat0;
end
aaa(oo_.dr.restrict_var_list,2:end)=alphahat;
for k=1:gend
aaa(static_var_list,k+1) = C(~ilagged,:)*alphahat(:,k)+D(~ilagged,:)*etahat(:,k);
end
if any(ilagged)
for k=2:gend
aaa(static_var_list0,k+1) = Tstar(ilagged,:)*alphahat(:,k-1)+Rstar(ilagged,:)*etahat(:,k);
end
aaa(static_var_list0,2) = Tstar(ilagged,:)*alphahat0+Rstar(ilagged,:)*etahat(:,1);
end
alphahat0=aaa(:,1);
alphahat=aaa(:,2:end);
% reconstruct updated variables
aaa=zeros(M_.endo_nbr,gend);
aaa(oo_.dr.restrict_var_list,:)=ahat;
for k=1:gend
aaa(static_var_list,k) = C(~ilagged,:)*ahat(:,k)+D(~ilagged,:)*eehat(:,k);
end
if any(ilagged)
% bbb=zeros(M_.endo_nbr,gend);
% bbb(oo_.dr.restrict_var_list,:)=aahat;
if ~isempty(aalphahat0)
aaa(static_var_list0,d+1) = Tstar(ilagged,:)*aalphahat0+Rstar(ilagged,:)*eehat(:,d+1);
end
for k=d+2:gend
aaa(static_var_list0,k) = Tstar(ilagged,:)*aahat(:,k-1)+Rstar(ilagged,:)*eehat(:,k);
end
end
ahat1=aaa;
% reconstruct aK
aaa = zeros(nk,M_.endo_nbr,gend+nk);
aaa(:,oo_.dr.restrict_var_list,:)=aK;
for k=1:gend
for jnk=1:nk
aaa(jnk,static_var_list,k+jnk) = C(~ilagged,:)*dynare_squeeze(aK(jnk,:,k+jnk));
end
end
if any(ilagged)
for k=1:gend
aaa(1,static_var_list0,k+1) = Tstar(ilagged,:)*ahat(:,k);
for jnk=2:nk
aaa(jnk,static_var_list0,k+jnk) = Tstar(ilagged,:)*dynare_squeeze(aK(jnk-1,:,k+jnk-1));
end
end
end
aK=aaa;
ahat=ahat1;
% reconstruct P
if ~isempty(P)
PP=zeros(M_.endo_nbr,M_.endo_nbr,gend+1);
PP(oo_.dr.restrict_var_list,oo_.dr.restrict_var_list,:)=P;
if ~options_.heteroskedastic_filter
DQD=D(~ilagged,:)*Q*transpose(D(~ilagged,:))+C(~ilagged,:)*R*Q*transpose(D(~ilagged,:))+D(~ilagged,:)*Q*transpose(C(~ilagged,:)*R);
DQR=D(~ilagged,:)*Q*transpose(R);
end
for k=1:gend+1
if options_.heteroskedastic_filter
DQD=D(~ilagged,:)*Q(:,:,k)*transpose(D(~ilagged,:))+C(~ilagged,:)*R*Q(:,:,k)*transpose(D(~ilagged,:))+D(~ilagged,:)*Q(:,:,k)*transpose(C(~ilagged,:)*R);
DQR=D(~ilagged,:)*Q(:,:,k)*transpose(R);
end
PP(static_var_list,static_var_list,k)=C(~ilagged,:)*P(:,:,k)*C(~ilagged,:)'+DQD;
PP(static_var_list,oo_.dr.restrict_var_list,k)=C(~ilagged,:)*P(:,:,k)+DQR;
PP(oo_.dr.restrict_var_list,static_var_list,k)=transpose(PP(static_var_list,oo_.dr.restrict_var_list,k));
end
P=PP;
clear PP
end
% reconstruct state_uncertainty
if ~isempty(state_uncertainty)
mm=size(T,1);
ss=length(find(static_var_list));
sstate_uncertainty=zeros(M_.endo_nbr,M_.endo_nbr,gend);
sstate_uncertainty(oo_.dr.restrict_var_list,oo_.dr.restrict_var_list,:)=state_uncertainty(1:mm,1:mm,:);
for k=1:gend
sstate_uncertainty(static_var_list,static_var_list,k)=[C(~ilagged,:) D(~ilagged,:)]*state_uncertainty(:,:,k)*[C(~ilagged,:) D(~ilagged,:)]';
tmp = [C(~ilagged,:) D(~ilagged,:)]*state_uncertainty(:,:,k);
sstate_uncertainty(static_var_list,oo_.dr.restrict_var_list,k)=tmp(1:ss,1:mm);
sstate_uncertainty(oo_.dr.restrict_var_list,static_var_list,k)=transpose(sstate_uncertainty(static_var_list,oo_.dr.restrict_var_list,k));
end
state_uncertainty=sstate_uncertainty;
clear sstate_uncertainty
end
if ~isempty(state_uncertainty0)
mm=size(T,1);
ss=length(find(static_var_list));
sstate_uncertainty=zeros(M_.endo_nbr,M_.endo_nbr);
sstate_uncertainty(oo_.dr.restrict_var_list,oo_.dr.restrict_var_list)=state_uncertainty0(1:mm,1:mm);
sstate_uncertainty(static_var_list,static_var_list)=[C(~ilagged,:) D(~ilagged,:)]*state_uncertainty0*[C(~ilagged,:) D(~ilagged,:)]';
tmp = [C(~ilagged,:) D(~ilagged,:)]*state_uncertainty0;
sstate_uncertainty(static_var_list,oo_.dr.restrict_var_list)=tmp(1:ss,1:mm);
sstate_uncertainty(oo_.dr.restrict_var_list,static_var_list)=transpose(sstate_uncertainty(static_var_list,oo_.dr.restrict_var_list));
state_uncertainty0=sstate_uncertainty;
clear sstate_uncertainty
end
% reconstruct PK
if ~isempty(PK)
PP = zeros(nk,M_.endo_nbr,M_.endo_nbr,gend+nk);
PP(:,oo_.dr.restrict_var_list,oo_.dr.restrict_var_list,:) = PK;
if ~options_.heteroskedastic_filter
DQD=D(~ilagged,:)*Q*transpose(D(~ilagged,:))+C(~ilagged,:)*R*Q*transpose(D(~ilagged,:))+D(~ilagged,:)*Q*transpose(C(~ilagged,:)*R);
DQR=D(~ilagged,:)*Q*transpose(R);
for f=1:nk
for k=1:gend
PP(f,static_var_list,static_var_list,k+f)=C(~ilagged,:)*squeeze(PK(f,:,:,k+f))*C(~ilagged,:)'+DQD;
PP(f,static_var_list,oo_.dr.restrict_var_list,k+f)=C(~ilagged,:)*squeeze(PK(f,:,:,k+f))+DQR;
PP(f,oo_.dr.restrict_var_list,static_var_list,k+f)=transpose(squeeze(PP(f,static_var_list,oo_.dr.restrict_var_list,k+f)));
end
end
end
PK=PP;
clear PP
end
end
bayestopt_.mf = bayestopt_.smoother_var_list(bayestopt_.smoother_mf);
end
function a=set_Kalman_smoother_starting_values(a,M_,oo_,options_)
% function a=set_Kalman_smoother_starting_values(a,M_,oo_,options_)
% Sets initial states guess for Kalman filter/smoother based on M_.filter_initial_state
%
% INPUTS
% o a [double] (p*1) vector of states
% o M_ [structure] decribing the model
% o oo_ [structure] storing the results
% o options_ [structure] describing the options
%
% OUTPUTS
% o a [double] (p*1) vector of set initial states
if isfield(M_,'filter_initial_state') && ~isempty(M_.filter_initial_state)
state_indices=oo_.dr.order_var(oo_.dr.restrict_columns);
for ii=1:size(state_indices,1)
if ~isempty(M_.filter_initial_state{state_indices(ii),1})
if options_.loglinear && ~options_.logged_steady_state
a(oo_.dr.restrict_columns(ii)) = log(eval(M_.filter_initial_state{state_indices(ii),2})) - log(oo_.dr.ys(state_indices(ii)));
elseif ~options_.loglinear && ~options_.logged_steady_state
a(oo_.dr.restrict_columns(ii)) = eval(M_.filter_initial_state{state_indices(ii),2}) - oo_.dr.ys(state_indices(ii));
else
error('The steady state is logged. This should not happen. Please contact the developers')
end
end
end
end
|