| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 
 | function [x,u] = lyapunov_symm(a,b,lyapunov_fixed_point_tol,qz_criterium,lyapunov_complex_threshold,method,debug)
% Solves the Lyapunov equation x-a*x*a' = b, for b and x symmetric matrices.
% If a has some unit roots, the function computes only the solution of the stable subsystem.
%
% INPUTS:
%   a                           [double]    n*n matrix.
%   b                           [double]    n*n matrix.
%   qz_criterium                [double]    unit root threshold for eigenvalues
%   lyapunov_fixed_point_tol    [double]    convergence criteria for fixed_point algorithm.
%   lyapunov_complex_threshold  [double]    scalar, complex block threshold for the upper triangular matrix T.
%   method                      [integer]   Scalar, if method=0 [default] then U, T, n and k are not persistent.
%                                                      method=1 then U, T, n and k are declared as persistent
%                                                               variables and the Schur decomposition is triggered.
%                                                      method=2 then U, T, n and k are declared as persistent
%                                                               variables and the Schur decomposition is not performed.
%                                                      method=3 fixed point method
% OUTPUTS
%   x:      [double]    m*m solution matrix of the lyapunov equation, where m is the dimension of the stable subsystem.
%   u:      [double]    Schur vectors associated with unit roots
%
% ALGORITHM
%   Uses reordered Schur decomposition (Bartels-Stewart algorithm)
%   [method<3] or a fixed point algorithm (method==3)
%
% SPECIAL REQUIREMENTS
%   None
% Copyright © 2006-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
if nargin<6 || isempty(method)
    method = 0;
end
if nargin<7
    debug = 0;
end
if method == 3
    persistent X method1;
    if ~isempty(method1)
        method = method1;
    end
    if debug
        fprintf('lyapunov_symm:: [method=%d] \n',method);
    end
    if method == 3
        %tol = 1e-10;
        it_fp = 0;
        evol = 100;
        if isempty(X) || length(X)~=length(b)
            X = b;
            max_it_fp = 2000;
        else
            max_it_fp = 300;
        end
        at = a';
        %fixed point iterations
        while evol >  lyapunov_fixed_point_tol && it_fp < max_it_fp
            X_old = X;
            X = a * X * at + b;
            evol = max(sum(abs(X - X_old))); %norm_1
                                             %evol = max(sum(abs(X - X_old)')); %norm_inf
            it_fp = it_fp + 1;
        end
        if debug
            fprintf('lyapunov_symm:: lyapunov fixed_point iterations=%d norm=%g\n',it_fp,evol);
        end
        if it_fp >= max_it_fp
            disp(['lyapunov_symm:: convergence not achieved in solution of Lyapunov equation after ' int2str(it_fp) ' iterations, switching method from 3 to 0']);
            method1 = 0;
            method = 0;
        else
            method1 = 3;
            x = X;
            return
        end
    end
end
if method
    persistent U T k n
else
    %    if exist('U','var')
    %        clear('U','T','k','n')
    %    end
end
u = [];
if size(a,1) == 1
    x=b/(1-a*a);
    return
end
if method<2
    [U,T] = schur(full(a));
    e1 = abs(ordeig(T)) > 2-qz_criterium;
    k = sum(e1);       % Number of unit roots.
    n = length(e1)-k;  % Number of stationary variables.
    if k > 0
        % Selects stable roots
        [U,T] = ordschur(U,T,e1);
        T = T(k+1:end,k+1:end);
    end
end
B = U(:,k+1:end)'*b*U(:,k+1:end);
x = zeros(n,n);
i = n;
while i >= 2
    if abs(T(i,i-1))<lyapunov_complex_threshold
        if i == n
            c = zeros(n,1);
        else
            c = T(1:i,:)*(x(:,i+1:end)*T(i,i+1:end)') + ...
                T(i,i)*T(1:i,i+1:end)*x(i+1:end,i);
        end
        q = eye(i)-T(1:i,1:i)*T(i,i);
        x(1:i,i) = q\(B(1:i,i)+c);
        x(i,1:i-1) = x(1:i-1,i)';
        i = i - 1;
    else
        if i == n
            c = zeros(n,1);
            c1 = zeros(n,1);
        else
            c = T(1:i,:)*(x(:,i+1:end)*T(i,i+1:end)') + ...
                T(i,i)*T(1:i,i+1:end)*x(i+1:end,i) + ...
                T(i,i-1)*T(1:i,i+1:end)*x(i+1:end,i-1);
            c1 = T(1:i,:)*(x(:,i+1:end)*T(i-1,i+1:end)') + ...
                 T(i-1,i-1)*T(1:i,i+1:end)*x(i+1:end,i-1) + ...
                 T(i-1,i)*T(1:i,i+1:end)*x(i+1:end,i);
        end
        q = [  eye(i)-T(1:i,1:i)*T(i,i) ,  -T(1:i,1:i)*T(i,i-1) ; ...
               -T(1:i,1:i)*T(i-1,i)     ,   eye(i)-T(1:i,1:i)*T(i-1,i-1) ];
        z =  q\[ B(1:i,i)+c ; B(1:i,i-1) + c1 ];
        x(1:i,i) = z(1:i);
        x(1:i,i-1) = z(i+1:end);
        x(i,1:i-1) = x(1:i-1,i)';
        x(i-1,1:i-2) = x(1:i-2,i-1)';
        i = i - 2;
    end
end
if i == 1
    c = T(1,:)*(x(:,2:end)*T(1,2:end)') + T(1,1)*T(1,2:end)*x(2:end,1);
    x(1,1) = (B(1,1)+c)/(1-T(1,1)*T(1,1));
end
x = U(:,k+1:end)*x*U(:,k+1:end)';
u = U(:,1:k);
 |