1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
function varargout = sur(ds, param_names, eqtags, model_name, noniterative, ds_range)
% Seemingly Unrelated Regressions
%
% INPUTS
% ds [dseries] data to use in estimation
% param_names [cellstr] list of parameters to estimate
% eqtags [cellstr] names of equation tags to estimate. If empty,
% estimate all equations
% model_name [string] name of model to be displayed with
% report
% noniterative [bool] if true use noniterative estimation method
% ds_range [dates] range of dates to use in estimation
%
% OUTPUTS
% none
%
% SPECIAL REQUIREMENTS
% dynare must have been run with the option: json=compute
% Copyright © 2017-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
global M_ oo_ options_
%
% Check inputs
%
if nargin < 1 || nargin > 6
error('function takes between 1 and 6 arguments');
end
if isempty(ds) || ~isdseries(ds)
error('The first argument must be a dseries');
end
if nargin < 6
ds_range = ds.dates;
else
if isempty(ds_range)
ds_range = ds.dates;
else
if ds_range(1) < ds.firstdate || ds_range(end) > lastdate(ds)
error('There is a problem with the 6th argument: the date range does not correspond to that of the dseries')
end
end
end
if nargin < 5
noniterative = false;
else
if ~islogical(noniterative)
error('the fifth argument, if passed, must be a boolean')
end
end
if nargin < 4
if ~isfield(oo_, 'sur')
model_name = 'sur_model_number_1';
else
model_name = ['sur_model_number_' num2str(length(fieldnames(oo_.sur)) + 1)];
end
else
if ~isvarname(model_name)
error('the fourth argument, if passed, must be a string')
end
end
if nargin < 3
eqtags = {};
end
if nargin < 2
param_names = {};
else
if ~isempty(param_names) && ~iscellstr(param_names)
error('the 2nd argument must be a cellstr')
end
end
maxit = 100;
tol = 1e-6;
%
% Get Equation(s)
%
ast = handle_constant_eqs(get_ast(eqtags));
neqs = length(ast);
%
% Find parameters and variable names in equations and setup estimation matrices
%
[Y, lhssub, X, fp, lp, residnames] = common_parsing(ds(ds_range), ast, true, param_names);
clear ast
nobs = Y{1}.nobs;
[Y, lhssub, X, constrained] = put_in_sur_form(Y, lhssub, X);
if nargin == 1 && size(X, 2) ~= M_.param_nbr
warning(['Not all parameters were used in model: ' strjoin(setdiff(M_.param_names, X.name)', ', ')]);
end
%
% Return to surgibbs if called from there
%
st = dbstack(1);
if ~isempty(st) && strcmp(st(1).name, 'surgibbs')
varargout{1} = nobs;
varargout{2} = X{param_names{:}}.data;
varargout{3} = Y.data;
varargout{4} = neqs;
varargout{5} = lhssub.data;
varargout{6} = fp{1};
varargout{7} = lp{1};
return
end
% constrained_param_idxs: indexes in X.name of parameters that were constrained
constrained_param_idxs = NaN(length(constrained), 1);
j = 0;
for i = 1:length(constrained)
idx = find(strcmp(X.name, constrained{i}));
if ~isempty(idx)
j = j+1;
constrained_param_idxs(j, 1) = idx;
end
end
constrained_param_idxs = constrained_param_idxs(1:j);
%
% Estimation
%
oo_.sur.(model_name).dof = nobs;
% Estimated Parameters
[q, r] = qr(X.data, 0);
xpxi = (r'*r)\eye(size(X.data, 2));
beta0 = (r\(q'*Y.data));
for i = 1:maxit
resid = Y.data - X.data * beta0;
resid = reshape(resid, oo_.sur.(model_name).dof, neqs);
vcv = resid'*resid/oo_.sur.(model_name).dof;
kLeye = kron(inv(chol(vcv))', eye(oo_.sur.(model_name).dof));
[q, r] = qr(kLeye*X.data, 0);
oo_.sur.(model_name).beta = r\(q'*kLeye*Y.data);
if noniterative || max(abs(beta0 - oo_.sur.(model_name).beta)) < tol
break
end
beta0 = oo_.sur.(model_name).beta;
if i == maxit
warning('maximum number of iterations reached')
end
end
% Set appropriate entries in M_.Sigma_e
idxs = zeros(length(residnames), 1);
for i = 1:length(residnames)
idxs(i) = find(strcmp(residnames{i}, M_.exo_names));
end
M_.Sigma_e(idxs, idxs) = vcv;
% opidxs: indexes in M_.params associated with columns of X
opidxs = zeros(X.vobs, 1);
for i = 1:X.vobs
opidxs(i, 1) = find(strcmp(X.name{i}, M_.param_names));
end
% Set params
M_.params(opidxs) = oo_.sur.(model_name).beta;
% Write .inc file
write_param_init_inc_file('sur', model_name, opidxs, oo_.sur.(model_name).beta);
% Yhat
oo_.sur.(model_name).Yhat = X.data * oo_.sur.(model_name).beta;
oo_.sur.(model_name).YhatOrig = oo_.sur.(model_name).Yhat;
oo_.sur.(model_name).Yobs = Y;
% Residuals
oo_.sur.(model_name).resid = Y.data - oo_.sur.(model_name).Yhat;
% Correct Yhat reported back to user
oo_.sur.(model_name).Yhat = oo_.sur.(model_name).Yhat + lhssub;
yhatname = [model_name '_FIT'];
ds.(yhatname) = dseries(oo_.sur.(model_name).Yhat.data, fp{1}, yhatname);
varargout{1} = ds;
%
% Calculate various statistics
%
% Estimate for sigma^2
SS_res = oo_.sur.(model_name).resid'*oo_.sur.(model_name).resid;
oo_.sur.(model_name).s2 = SS_res/oo_.sur.(model_name).dof;
% System R^2 value of McElroy (1977) - formula from Judge et al. (1986, p. 477)
oo_.sur.(model_name).R2 = 1 - (oo_.sur.(model_name).resid' * kron(inv(M_.Sigma_e(idxs,idxs)), eye(nobs)) * oo_.sur.(model_name).resid) ...
/ (oo_.sur.(model_name).Yobs.data' * kron(inv(M_.Sigma_e(idxs,idxs)), eye(nobs)-ones(nobs,nobs)/nobs) * oo_.sur.(model_name).Yobs.data);
% Adjusted R^2
oo_.sur.(model_name).adjR2 = 1 - (1 - oo_.sur.(model_name).R2) * ((neqs*nobs-neqs)/(neqs*nobs-size(oo_.sur.(model_name).beta,1)));
% Durbin-Watson
ediff = oo_.sur.(model_name).resid(2:oo_.sur.(model_name).dof) - oo_.sur.(model_name).resid(1:oo_.sur.(model_name).dof - 1);
oo_.sur.(model_name).dw = (ediff'*ediff)/SS_res;
% Standard Error
oo_.sur.(model_name).stderr = sqrt(oo_.sur.(model_name).s2*diag(xpxi));
% T-Stat
oo_.sur.(model_name).tstat = oo_.sur.(model_name).beta./oo_.sur.(model_name).stderr;
oo_.sur.(model_name).neqs = neqs;
oo_.sur.(model_name).pname = X.name;
%
% Print Output
%
if ~options_.noprint
preamble = {['Model name: ' model_name], ...
sprintf('No. Equations: %d', oo_.sur.(model_name).neqs), ...
sprintf('No. Independent Variables: %d', size(X, 2)), ...
sprintf('Observations: %d', oo_.sur.(model_name).dof)};
afterward = {sprintf('R^2: %f', oo_.sur.(model_name).R2), ...
sprintf('R^2 Adjusted: %f', oo_.sur.(model_name).adjR2), ...
sprintf('s^2: %f', oo_.sur.(model_name).s2), ...
sprintf('Durbin-Watson: %f', oo_.sur.(model_name).dw)};
if ~isempty(constrained_param_idxs)
afterward = [afterward, ['Constrained parameters: ' ...
strjoin(X.name(constrained_param_idxs), ', ')]];
end
dyn_table('SUR Estimation', preamble, afterward, X.name, ...
{'Estimates','t-statistic','Std. Error'}, 4, ...
[oo_.sur.(model_name).beta oo_.sur.(model_name).tstat oo_.sur.(model_name).stderr]);
end
end
|