| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 
 | function [dr, info] = dyn_first_order_solver(jacobia, M_, dr, options_, task)
% [dr, info] = dyn_first_order_solver(jacobia, M_, dr, options_, task)
% Computes the first order reduced form of a DSGE model.
%
% INPUTS
% - jacobia       [double]    matrix, the jacobian of the dynamic model.
% - M_            [struct]    Matlab's structre describing the model
% - dr            [struct]    Matlab's structure describing the reduced form model.
% - options_      [struct]    Matlab's structure containing the current state of the options
% - task          [integer]   scalar, if task = 0 then decision rules are computed and if task = 1 then only eigenvales are computed.
%
% OUTPUTS
% - dr            [struct]    Matlab's structure describing the reduced form model.
% - info          [integer]   scalar, error code. Possible values are:
%
%                                     info=0 -> no error,
%                                     info=1 -> the model doesn't determine the current variables uniquely,
%                                     info=2 -> mjdgges dll returned an error,
%                                     info=3 -> Blanchard and Kahn conditions are not satisfied: no stable equilibrium,
%                                     info=4 -> Blanchard and Kahn conditions are not satisfied: indeterminacy,
%                                     info=5 -> Blanchard and Kahn conditions are not satisfied: indeterminacy due to rank failure,
%                                     info=7 -> One of the eigenvalues is close to 0/0 (infinity of complex solutions)
% Copyright © 2001-2024 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
persistent reorder_jacobian_columns innovations_idx index_s index_m index_c
persistent index_p row_indx index_0m index_0p k1 k2 state_var
persistent ndynamic nstatic nfwrd npred nboth nd nsfwrd n_current index_d
persistent index_e index_d1 index_d2 index_e1 index_e2 row_indx_de_1
persistent row_indx_de_2 cols_b
if ~nargin
    if nargout
        error('dyn_first_order_solver:: Initialization mode returns zero argument!')
    end
    reorder_jacobian_columns = [];
    return
end
exo_nbr = M_.exo_nbr;
if isempty(reorder_jacobian_columns)
    maximum_lag = M_.maximum_endo_lag;
    nfwrd    = M_.nfwrd;
    nboth    = M_.nboth;
    npred    = M_.npred;
    nstatic  = M_.nstatic;
    ndynamic = M_.ndynamic;
    nsfwrd   = M_.nsfwrd;
    k1 = 1:(npred+nboth);
    k2 = 1:(nfwrd+nboth);
    order_var = dr.order_var;
    nd = npred+nfwrd+2*nboth;
    lead_lag_incidence = M_.lead_lag_incidence;
    nz = nnz(lead_lag_incidence);
    lead_id = find(lead_lag_incidence(maximum_lag+2,:));
    if maximum_lag
        lag_id = find(lead_lag_incidence(1,:));
    else
        lag_id = [];
    end
    both_id = intersect(lead_id,lag_id);
    if maximum_lag
        no_both_lag_id = setdiff(lag_id,both_id);
    else
        no_both_lag_id = lag_id;
    end
    innovations_idx = nz+(1:exo_nbr);
    state_var  = [no_both_lag_id, both_id];
    index_c  = nonzeros(lead_lag_incidence(maximum_lag+1,:));             % Index of all endogenous variables present at time=t
    n_current = length(index_c);
    index_s  = npred+nboth+(1:nstatic);     % Index of all static
                                            % endogenous variables
                                            % present at time=t
    indexi_0 = npred+nboth;
    npred0 = nnz(lead_lag_incidence(maximum_lag+1,no_both_lag_id));
    index_0m = indexi_0+nstatic+(1:npred0);
    nfwrd0 = nnz(lead_lag_incidence(maximum_lag+1,lead_id));
    index_0p = indexi_0+nstatic+npred0+(1:nfwrd0);
    index_m  = 1:(npred+nboth);
    index_p  = npred+nboth+n_current+(1:nfwrd+nboth);
    row_indx_de_1 = 1:ndynamic;
    row_indx_de_2 = ndynamic+(1:nboth);
    row_indx = nstatic+row_indx_de_1;
    index_d = [index_0m index_p];
    llx = lead_lag_incidence(:,order_var);
    index_d1 = [find(llx(maximum_lag+1,nstatic+(1:npred))), npred+nboth+(1:nsfwrd) ];
    index_d2 = npred+(1:nboth);
    index_e = [index_m index_0p];
    index_e1 = [1:npred+nboth, npred+nboth+find(llx(maximum_lag+1,nstatic+npred+(1: ...
                                                      nsfwrd)))];
    index_e2 = npred+nboth+(1:nboth);
    [~,cols_b] = find(lead_lag_incidence(maximum_lag+1, order_var));
    reorder_jacobian_columns = [nonzeros(lead_lag_incidence(:,order_var)'); ...
                        nz+(1:exo_nbr)'];
end
dr.ghx = [];
dr.ghu = [];
dr.state_var = state_var;
jacobia = jacobia(:,reorder_jacobian_columns);
if nstatic > 0
    [Q, ~] = qr(jacobia(:,index_s));
    aa = Q'*jacobia;
else
    aa = jacobia;
end
A = aa(:,index_m);  % Jacobian matrix for lagged endogenous variables
B(:,cols_b) = aa(:,index_c);  % Jacobian matrix for contemporaneous endogenous variables
C = aa(:,index_p);  % Jacobian matrix for led endogenous variables
info = 0;
if task ~= 1 && (options_.dr_cycle_reduction || options_.dr_logarithmic_reduction)
    if n_current < M_.endo_nbr
        if options_.dr_cycle_reduction
            error(['The cycle reduction algorithm can''t be used when the ' ...
                   'coefficient matrix for current variables isn''t invertible'])
        elseif options_.dr_logarithmic_reduction
            error(['The logarithmic reduction algorithm can''t be used when the ' ...
                   'coefficient matrix for current variables isn''t invertible'])
        end
    end
    A1 = [aa(row_indx,index_m ) zeros(ndynamic,nfwrd)];
    B1 = [aa(row_indx,index_0m) aa(row_indx,index_0p) ];
    C1 = [zeros(ndynamic,npred) aa(row_indx,index_p)];
    if options_.dr_cycle_reduction
        [ghx, info] = cycle_reduction(A1, B1, C1, options_.dr_cycle_reduction_tol);
    else
        [ghx, info] = logarithmic_reduction(C1, B1, A1, options_.dr_logarithmic_reduction_tol, options_.dr_logarithmic_reduction_maxiter);
    end
    if info
        % cycle_reduction or logarithmic reduction failed and set info
        return
    end
    ghx = ghx(:,index_m);
    hx = ghx(1:npred+nboth,:);
    gx = ghx(1+npred:end,:);
else
    D = zeros(ndynamic+nboth);
    E = zeros(ndynamic+nboth);
    D(row_indx_de_1,index_d1) = aa(row_indx,index_d);
    D(row_indx_de_2,index_d2) = eye(nboth);
    E(row_indx_de_1,index_e1) = -aa(row_indx,index_e);
    E(row_indx_de_2,index_e2) = eye(nboth);
    [ss, tt, w, sdim, dr.eigval, info1] = mjdgges(E, D, options_.qz_criterium, options_.qz_zero_threshold);
    if info1
        if info1 == -30
            % one eigenvalue is close to 0/0
            info(1) = 7;
        else
            info(1) = 2;
            info(2) = info1;
            info(3) = size(E,2);
        end
        return
    end
    dr.sdim = sdim;                      % Number of stable eigenvalues.
    dr.edim = length(dr.eigval)-sdim;    % Number of exposive eigenvalues.
    nba = nd-sdim;
    if task==1
        if rcond(w(npred+nboth+1:end,npred+nboth+1:end)) < 1e-9
            dr.full_rank = 0;
        else
            dr.full_rank = 1;
        end
    end
    if nba ~= nsfwrd
        temp = sort(abs(dr.eigval));
        if nba > nsfwrd
            temp = temp(nd-nba+1:nd-nsfwrd)-1-options_.qz_criterium;
            info(1) = 3;
        elseif nba < nsfwrd
            temp = temp(nd-nsfwrd+1:nd-nba)-1-options_.qz_criterium;
            info(1) = 4;
        end
        info(2) = temp'*temp;
        return
    end
    if task==1, return, end
    %First order approximation
    indx_stable_root = 1: (nd - nsfwrd);         %=> index of stable roots
    indx_explosive_root = npred + nboth + 1:nd;  %=> index of explosive roots
                                                 % derivatives with respect to dynamic state variables
                                                 % forward variables
    Z = w';
    Z11 = Z(indx_stable_root,    indx_stable_root);
    Z21  = Z(indx_explosive_root, indx_stable_root);
    Z22  = Z(indx_explosive_root, indx_explosive_root);
    opts.TRANSA = false; % needed by Octave 4.0.0
    [minus_gx,rc] = linsolve(Z22,Z21,opts);
    if rc < 1e-9
        % Z22 is near singular
        info(1) = 5;
        info(2) = -log(rc);
        return
    end
    gx  = -minus_gx;
    % predetermined variables
    opts.UT = true;
    opts.TRANSA = true;
    hx1 = linsolve(tt(indx_stable_root, indx_stable_root),Z11,opts)';
    opts.UT = false;      % needed by Octave 4.0.0
    opts.TRANSA = false;  % needed by Octave 4.0.0
    hx2 = linsolve(Z11,ss(indx_stable_root, indx_stable_root)',opts)';
    hx =  hx1*hx2;
    ghx = [hx(k1,:); gx(k2(nboth+1:end),:)];
end
if nstatic > 0
    B_static = B(:,1:nstatic);  % submatrix containing the derivatives w.r. to static variables
else
    B_static = [];
end
%static variables, backward variable, mixed variables and forward variables
B_pred = B(:,nstatic+1:nstatic+npred+nboth);
B_fyd = B(:,nstatic+npred+nboth+1:end);
% static variables
if nstatic > 0
    temp = - C(1:nstatic,:)*gx*hx;
    b(:,cols_b) = aa(:,index_c);
    b10 = b(1:nstatic, 1:nstatic);
    b11 = b(1:nstatic, nstatic+1:end);
    temp(:,index_m) = temp(:,index_m)-A(1:nstatic,:);
    temp = b10\(temp-b11*ghx);
    if options_.debug
        if any(any(~isfinite(temp)))
            fprintf('\ndyn_first_order_solver: infinite/NaN elements encountered when solving for the static variables\n')
            fprintf('dyn_first_order_solver: This often arises if there is a singularity.\n\n')
        end
    end
    ghx = [temp; ghx];
end
A_ = real([B_static C*gx+B_pred B_fyd]); % The state_variable of the block are located at [B_pred B_both]
if exo_nbr
    if nstatic > 0
        fu = Q' * jacobia(:,innovations_idx);
    else
        fu = jacobia(:,innovations_idx);
    end
    ghu = - A_ \ fu;
else
    ghu = [];
end
dr.ghx = ghx;
dr.ghu = ghu;
if options_.aim_solver ~= 1
    % Necessary when using Sims' routines for QZ
    dr.ghx = real(ghx);
    dr.ghu = real(ghu);
    hx = real(hx);
end
% non-predetermined variables
dr.gx = gx;
%predetermined (endogenous state) variables, square transition matrix
dr.Gy = hx;
 |