1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
function [dataset_, dataset_info, newdatainterface] = makedataset(options_, initialconditions, gsa_flag)
%[dataset_, dataset_info, newdatainterface] = makedataset(options_, initialconditions, gsa_flag)
% Initialize a dataset as a dseries object.
% INPUTS
% ======
%
% options_ [struct] Structure of options built by Dynare's preprocessor.
% initialconditions [double] number of lags for VAR and DSGE_VAR
% gsa_flag [integer] 1: GSA, 0: other
%
% OUTPUTS
% =======
%
% dataset_ [dseries] The dataset.
% dataset_info [struct] Various informations about the dataset (descriptive statistics and missing observations).
%
% EXAMPLE
% =======
%
% [dataset_, dataset_info] = makedataset(options_) ;
%
%
% See also dynare_estimation_init
% Copyright © 2014-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
if nargin<3
gsa_flag = 0;
end
if nargin<2 || isempty(initialconditions)
% If a the sample is to be used for the estimation of a VAR or DSGE-VAR model
% the second argument must be a strictly positive integer (the number of lags).
initialconditions = 0;
end
if isempty(options_.datafile) && isempty(options_.dataset.file) && isempty(options_.dataset.series)
if gsa_flag
dataset_ = dseries();
dataset_info = struct('missing', struct('state', 0, 'aindex', [], 'vindex', [], 'number_of_observations', NaN, 'no_more_missing_observations', NaN), ...
'descriptive', struct('mean', [], 'covariance', [], 'correlation', [], 'autocovariance', []));
newdatainterface=0;
return
else
error('makedataset: datafile option is missing!')
end
end
if isempty(options_.datafile) && ~isempty(options_.dataset.file)
datafile = options_.dataset.file;
newdatainterface = 1;
elseif isempty(options_.datafile) && ~isempty(options_.dataset.series)
try
dseriesobjectforuserdataset = evalin('base', options_.dataset.series);
catch
error('makedataset: %s is unknown!', options_.dataset.series)
end
if ~isdseries(dseriesobjectforuserdataset)
error('makedataset: %s has to be a dseries object!', options_.dataset.series)
end
datafile = [];
newdatainterface = 1;
elseif ~isempty(options_.datafile) && isempty(options_.dataset.file)
datafile = options_.datafile;
newdatainterface = 0;
elseif ~isempty(options_.datafile) && ~isempty(options_.dataset.file)
error('makedataset: You cannot simultaneously use the data command and the datafile option (in the estimation command)!')
else
error('makedataset: You have to specify the datafile!')
end
% Check extension.
if ~isempty(datafile)
allowed_extensions = {'m','mat','csv','xls','xlsx'};
datafile_extension = get_file_extension(datafile);
if isempty(datafile_extension)
available_extensions = {}; j = 1;
[datafilepath, datafilename] = fileparts(datafile);
if isempty(datafilepath)
datafilepath = '.';
end
dircontent = dir(datafilepath);
for i=1:length(allowed_extensions)
if ~isempty(strmatch([datafilename '.' allowed_extensions{i}],{dircontent.name},'exact'))
available_extensions(j) = {allowed_extensions{i}};
j = j+1;
end
end
if isempty(available_extensions)
error('makedataset: I can''t find a datafile (with allowed extension m, mat, csv, xls or xlsx)!')
end
if length(available_extensions)>1
error(sprintf(['makedataset: You did not specify an extension for the datafile, but more than one candidate ' ...
'is available in the designated folder!\nPlease, add an extension to the datafile ' ...
'(m, mat, csv, xls or xlsx are permitted extensions).']));
end
datafile = [datafile '.' available_extensions{1}];
end
end
% Load the data in a dseries object.
if ~isempty(datafile)
if ~(newdatainterface==0 && ((length(datafile)>2 && strcmp(datafile(end-1:end),'.m')) || (length(datafile)>4 && strcmp(datafile(end-3:end),'.mat'))))
dataset_ = dseries(datafile);
else
if length(datafile)>2 && strcmp(datafile(end-1:end),'.m')
% Load an m file with the old interface.
dataset_ = load_m_file_data_legacy(datafile, options_.varobs);
elseif length(datafile)>4 && strcmp(datafile(end-3:end),'.mat')
% Load a mat file with the old interface.
dataset_ = load_mat_file_data_legacy(datafile, options_.varobs);
end
end
else
dataset_ = dseriesobjectforuserdataset;
clear('dseriesobjectforuserdataset');
end
if size(unique(dataset_.name),1)~=size(dataset_.name,1)
error('makedataset: the data set must not contain two variables with the same name and must not contain empty/non-named columns.')
end
% Select a subset of the variables.
dataset_ = dataset_{options_.varobs{:}};
% Apply log function if needed.
if options_.loglinear && ~options_.logdata
dataset_ = dataset_.log();
end
% Test if an initial period (different from its default value) is explicitely defined in the datafile.
if isequal(dataset_.init, dates(1,1))
dataset_default_initial_period = 1;
else
dataset_default_initial_period = 0;
end
% Test if an initial period (different from its default value) is explicitely defined in the mod file with the set_time command.
if ~isdates(options_.initial_period) && isnan(options_.initial_period)
set_time_default_initial_period = 1;
else
set_time_default_initial_period = 0;
end
if ~set_time_default_initial_period && dataset_default_initial_period
% Overwrite the initial period in dataset (it was set to default).
% Note that the updates of freq and time members are auto-magically
% done by dseries::subsasgn overloaded method.
dataset_.init = options_.initial_period;
end
if set_time_default_initial_period && ~dataset_default_initial_period
% Overwrite the global initial period defined by set_time (it was set to default).
options_.initial_period = dataset_.init;
end
if ~set_time_default_initial_period && ~dataset_default_initial_period
% Check if dataset.init and options_.initial_period are identical.
if options_.initial_period<dataset_.init
error('makedataset: The date as defined by the set_time command is not consistent with the initial period in the database!')
end
end
% Set firstobs, lastobs and nobs
if newdatainterface
if isempty(options_.dataset.firstobs)
% first_obs option was not used in the data command.
firstobs = dataset_.init;
else
firstobs = options_.dataset.firstobs;
end
if isnan(options_.dataset.nobs)
% nobs option was not used in the data command.
if isempty(options_.dataset.lastobs)
% last_obs option was not used in the data command.
nobs = dataset_.nobs;
lastobs = dataset_.dates(end);
else
lastobs = options_.dataset.lastobs;
nobs = lastobs-firstobs+1;
end
else
nobs = options_.dataset.nobs;
if isempty(options_.dataset.lastobs)
% last_obs option was not used in the data command.
lastobs = firstobs+(nobs-1);
else
% last_obs and nobs were used in the data command. Check that they are consistent (with firstobs).
if ~isequal(lastobs,firstobs+(nobs-1))
error('makedataset: Options last_obs (%s), first_obs (%s) and nobs (%s) are not consistent!',char(lastobs),char(firstobs),num2str(nobs));
end
end
end
else
if isnan(options_.first_obs)
firstobs = dataset_.init;
else
firstobs = dataset_.dates(options_.first_obs);
end
if isnan(options_.nobs)
lastobs = dataset_.dates(end);
nobs = lastobs-firstobs+1;
else
nobs = options_.nobs;
lastobs = firstobs+(nobs-1);
end
end
% Add initial conditions if needed
FIRSTOBS = firstobs-initialconditions;
% Check that firstobs belongs to dataset_.dates
if firstobs<dataset_.init
error('makedataset: first_obs (%s) cannot be less than the first date in the dataset (%s)!',char(firstobs),char(dataset_.init))
end
% Check that FIRSTOBS belongs to dataset_.dates
if initialconditions && FIRSTOBS<dataset_.init
error('makedataset: first_obs (%s) - %i cannot be less than the first date in the dataset (%s)!\nReduce the number of lags in the VAR model or increase the value of first_obs\nto at least first_obs=%i.', char(firstobs), initialconditions, char(dataset_.init),initialconditions+1);
end
% Check that lastobs belongs to dataset_.dates...
if newdatainterface
if lastobs>dataset_.dates(end)
error('makedataset: last_obs (%s) cannot be greater than the last date in the dataset (%s)!',char(lastobs),char(dataset_.dates(end)))
end
else
% ... or check that nobs is smaller than the number of observations in dataset_.
if FIRSTOBS>dataset_.dates(1)
if FIRSTOBS+nobs-1>dataset_.dates(end)
error('makedataset: Given first_obs=%u and %u total observations in the dataset, the current nobs of %s must not be greater than %s!', options_.first_obs, dataset_.nobs, num2str(nobs), num2str(dataset_.nobs-find(dataset_.dates==FIRSTOBS)+1))
end
else
if nobs>dataset_.nobs
error('makedataset: nobs (%s) cannot be greater than the last date in the dataset (%s)!', num2str(nobs), num2str(dataset_.nobs))
end
end
end
% Select a subsample.
dataset_ = dataset_(FIRSTOBS:lastobs);
% Initialize dataset_info structure.
dataset_info = struct('missing', struct('state', NaN, 'aindex', [], 'vindex', [], 'number_of_observations', NaN, 'no_more_missing_observations', NaN), ...
'descriptive', struct('mean', [], 'covariance', [], 'correlation', [], 'autocovariance', []));
% Fill dataset_info.missing if some observations are missing
dataset_info.missing.state = isanynan(dataset_.data);
if dataset_info.missing.state
[dataset_info.missing.aindex, dataset_info.missing.number_of_observations, dataset_info.missing.no_more_missing_observations, dataset_info.missing.vindex] = ...
describe_missing_data(dataset_.data);
else
dataset_info.missing.aindex = num2cell(transpose(repmat(1:dataset_.vobs,dataset_.nobs,1)),1);
dataset_info.missing.no_more_missing_observations = 1;
end
% Compute the empirical mean of the observed variables.
dataset_info.descriptive.mean = nanmean(dataset_.data,1);
% Compute the empirical covariance matrix of the observed variables.
dataset_info.descriptive.covariance = nancovariance(dataset_.data);
% Compute the empirical correlation matrix of the observed variables.
normalization_matrix = diag(1./sqrt(diag(dataset_info.descriptive.covariance)));
dataset_info.descriptive.correlation = normalization_matrix*dataset_info.descriptive.covariance*normalization_matrix;
% Compute autocorrelation function.
dataset_info.descriptive.autocovariance = nanautocovariance(dataset_.data, options_.ar);
% Save raw data.
dataset_info.rawdata = dataset_.data;
% Prefilter the data if needed (remove the mean).
if isequal(options_.prefilter, 1)
dataset_ = dataset_.detrend();
end
|