File: backward_model_forecast.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (130 lines) | stat: -rw-r--r-- 4,935 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
function forecasts = backward_model_forecast(initialcondition, listofvariables, periods, withuncertainty)
%function forecasts = backward_model_forecast(initialcondition, listofvariables, periods, withuncertainty)
% Returns unconditional forecasts.
%
% INPUTS
% - initialcondition    [dseries]             Initial conditions for the endogenous variables.
% - periods             [integer]             scalar, the number of (forecast) periods.
% - withuncertainty     [logical]             scalar, returns confidence bands if true.
%
% OUTPUTS
% - forecast            [dseries]

% Copyright © 2017-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

global M_ options_ oo_

% Check that the model is actually backward
if M_.maximum_lead
    error('backward_model_forecast:: The specified model is not backward looking!')
end

% Initialize returned argument.
forecasts = struct();

% Set defaults.
if nargin<2
    listofvariables = M_.endo_names;
    periods = 8;
    withuncertainty = false;
end

if nargin<3
    periods = 8;
    withuncertainty = false;
end

if nargin<4
    withuncertainty = false;
end

start = initialcondition.dates(end)+1;

% Set default initial conditions for the innovations.
for i=1:M_.exo_nbr
    if ~ismember(M_.exo_names{i}, initialcondition.name)
        initialcondition{M_.exo_names{i}} = dseries(zeros(initialcondition.nobs, 1), initialcondition.dates(1), M_.exo_names{i});
    end
end

% Set up initial conditions
[initialcondition, periods, innovations, options_local, M_local, oo_local, endonames, ~, dynamic_resid, dynamic_g1] = ...
    simul_backward_model_init(initialcondition, periods, options_, M_, oo_, zeros(periods, M_.exo_nbr));

% Get vector of indices for the selected endogenous variables.
n = length(listofvariables);
idy = zeros(n,1);
for i=1:n
    j = find(strcmp(listofvariables{i}, endonames));
    if isempty(j)
        error('backward_model_forecast:: Variable %s is unknown!', listofvariables{i})
    else
        idy(i) = j;
    end
end

% Set the number of simulations (if required).
if withuncertainty
    B = 1000;
end

% Get the covariance matrix of the shocks.
if withuncertainty
    sigma = get_lower_cholesky_covariance(M_.Sigma_e,options_.add_tiny_number_to_cholesky);
end

% Compute forecast without shock
if options_.linear
    [ysim__0, errorflag] = simul_backward_linear_model_(initialcondition, periods, options_local, M_local, oo_local, innovations, dynamic_resid, dynamic_g1);
else
    [ysim__0, errorflag] = simul_backward_nonlinear_model_(initialcondition, periods, options_local, M_local, oo_local, innovations, dynamic_resid, dynamic_g1);
end

if errorflag
    error('Simulation failed.')
end

forecasts.pointforecast = dseries(transpose(ysim__0(idy,:)), initialcondition.init, listofvariables);

% Set first period of forecast
forecasts.start = start;

if withuncertainty
    % Preallocate an array gathering the simulations.
    ArrayOfForecasts = zeros(n, periods+initialcondition.nobs, B);
    for i=1:B
        innovations = transpose(sigma*randn(M_.exo_nbr, periods));
        if options_.linear
            [ysim__, ~, errorflag] = simul_backward_linear_model_(initialcondition, periods, options_local, M_local, oo_local, innovations, dynamic_resid, dynamic_g1);
        else
            [ysim__, ~, errorflag] = simul_backward_nonlinear_model_(initialcondition, periods, options_local, M_local, oo_local, innovations, dynamic_resid, dynamic_g1);
        end
        if errorflag
            error('Simulation failed.')
        end
        ArrayOfForecasts(:,:,i) = ysim__(idy,:);
    end
    % Compute mean (over future uncertainty) forecast.
    forecasts.meanforecast = dseries(transpose(mean(ArrayOfForecasts, 3)), initialcondition.init, listofvariables);
    forecasts.medianforecast = dseries(transpose(median(ArrayOfForecasts, 3)), initialcondition.init, listofvariables);
    forecasts.stdforecast = dseries(transpose(std(ArrayOfForecasts, 1,3)), initialcondition.init, listofvariables);
    % Compute lower and upper 95% confidence bands
    ArrayOfForecasts = sort(ArrayOfForecasts, 3);
    forecasts.lb = dseries(transpose(ArrayOfForecasts(:,:,round(0.025*B))), initialcondition.init, listofvariables);
    forecasts.ub = dseries(transpose(ArrayOfForecasts(:,:,round(0.975*B))), initialcondition.init, listofvariables);
end