1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
function forecasts = backward_model_forecast(initialcondition, listofvariables, periods, withuncertainty)
%function forecasts = backward_model_forecast(initialcondition, listofvariables, periods, withuncertainty)
% Returns unconditional forecasts.
%
% INPUTS
% - initialcondition [dseries] Initial conditions for the endogenous variables.
% - periods [integer] scalar, the number of (forecast) periods.
% - withuncertainty [logical] scalar, returns confidence bands if true.
%
% OUTPUTS
% - forecast [dseries]
% Copyright © 2017-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
global M_ options_ oo_
% Check that the model is actually backward
if M_.maximum_lead
error('backward_model_forecast:: The specified model is not backward looking!')
end
% Initialize returned argument.
forecasts = struct();
% Set defaults.
if nargin<2
listofvariables = M_.endo_names;
periods = 8;
withuncertainty = false;
end
if nargin<3
periods = 8;
withuncertainty = false;
end
if nargin<4
withuncertainty = false;
end
start = initialcondition.dates(end)+1;
% Set default initial conditions for the innovations.
for i=1:M_.exo_nbr
if ~ismember(M_.exo_names{i}, initialcondition.name)
initialcondition{M_.exo_names{i}} = dseries(zeros(initialcondition.nobs, 1), initialcondition.dates(1), M_.exo_names{i});
end
end
% Set up initial conditions
[initialcondition, periods, innovations, options_local, M_local, oo_local, endonames, ~, dynamic_resid, dynamic_g1] = ...
simul_backward_model_init(initialcondition, periods, options_, M_, oo_, zeros(periods, M_.exo_nbr));
% Get vector of indices for the selected endogenous variables.
n = length(listofvariables);
idy = zeros(n,1);
for i=1:n
j = find(strcmp(listofvariables{i}, endonames));
if isempty(j)
error('backward_model_forecast:: Variable %s is unknown!', listofvariables{i})
else
idy(i) = j;
end
end
% Set the number of simulations (if required).
if withuncertainty
B = 1000;
end
% Get the covariance matrix of the shocks.
if withuncertainty
sigma = get_lower_cholesky_covariance(M_.Sigma_e,options_.add_tiny_number_to_cholesky);
end
% Compute forecast without shock
if options_.linear
[ysim__0, errorflag] = simul_backward_linear_model_(initialcondition, periods, options_local, M_local, oo_local, innovations, dynamic_resid, dynamic_g1);
else
[ysim__0, errorflag] = simul_backward_nonlinear_model_(initialcondition, periods, options_local, M_local, oo_local, innovations, dynamic_resid, dynamic_g1);
end
if errorflag
error('Simulation failed.')
end
forecasts.pointforecast = dseries(transpose(ysim__0(idy,:)), initialcondition.init, listofvariables);
% Set first period of forecast
forecasts.start = start;
if withuncertainty
% Preallocate an array gathering the simulations.
ArrayOfForecasts = zeros(n, periods+initialcondition.nobs, B);
for i=1:B
innovations = transpose(sigma*randn(M_.exo_nbr, periods));
if options_.linear
[ysim__, ~, errorflag] = simul_backward_linear_model_(initialcondition, periods, options_local, M_local, oo_local, innovations, dynamic_resid, dynamic_g1);
else
[ysim__, ~, errorflag] = simul_backward_nonlinear_model_(initialcondition, periods, options_local, M_local, oo_local, innovations, dynamic_resid, dynamic_g1);
end
if errorflag
error('Simulation failed.')
end
ArrayOfForecasts(:,:,i) = ysim__(idy,:);
end
% Compute mean (over future uncertainty) forecast.
forecasts.meanforecast = dseries(transpose(mean(ArrayOfForecasts, 3)), initialcondition.init, listofvariables);
forecasts.medianforecast = dseries(transpose(median(ArrayOfForecasts, 3)), initialcondition.init, listofvariables);
forecasts.stdforecast = dseries(transpose(std(ArrayOfForecasts, 1,3)), initialcondition.init, listofvariables);
% Compute lower and upper 95% confidence bands
ArrayOfForecasts = sort(ArrayOfForecasts, 3);
forecasts.lb = dseries(transpose(ArrayOfForecasts(:,:,round(0.025*B))), initialcondition.init, listofvariables);
forecasts.ub = dseries(transpose(ArrayOfForecasts(:,:,round(0.975*B))), initialcondition.init, listofvariables);
end
|