1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
function [residuals, info] = calibrateresiduals(dbase, info, M_)
% [residuals, info] = calibrateresiduals(dbase, info, M_)
% Compute residuals in a backward model. Residuals are unobserved exogenous
% variables appearing additively in equations and without lags. An equation
% cannot have more than one residual, and a residual cannot appear in more
% than one equation.
%
% INPUTS
% - dbase [dseries] Object containing all the endogenous and observed exogenous variables.
% - info [struct] Informations about the residuals.
% - M_ [struct] M_ as produced by the preprocessor.
%
% OUTPUTS
% - residuals [dseries] Object containing the identified residuals.
% - info [struct] Informations about the residuals.
%
% REMARKS
% The first two input arguments are the output of checkdatabaseforinversion
% routine.
% Copyright © 2017-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
displayresidualsequationmapping = false;
% Get function handle for the dynamic model
dynamic_resid = str2func([M_.fname,'.sparse.dynamic_resid']);
% Get data for all the endogenous variables.
ydata = dbase{info.endonames{:}}.data;
% Define function to retrieve an equation name
eqname = @(z) M_.equations_tags{cellfun(@(x) x==z, M_.equations_tags(:,1)) & cellfun(@(x) isequal(x, 'name'), M_.equations_tags(:,2)),3};
% Get data for all the exogenous variables. Missing exogenous variables, to be solved for, have NaN values.
exogenousvariablesindbase = intersect(info.exonames, dbase.name);
residuals = dseries(NaN(dbase.nobs, length(info.residuals)), dbase.init, info.residuals);
allexogenousvariables = [dbase{exogenousvariablesindbase{:}}, residuals];
allexogenousvariables = allexogenousvariables{info.exonames{:}};
xdata = allexogenousvariables.data;
% Evaluate the dynamic equation
n = size(ydata, 2);
y = [ydata(1,:)'; ydata(2,:)'; NaN(n, 1)];
r = dynamic_resid(y, xdata(2,:), M_.params, zeros(n, 1));
% Check that the number of equations evaluating to NaN matches the number of residuals
idr = find(isnan(r));
if ~isequal(length(idr), residuals.vobs)
error('Each residual should appear in only one equation, and an equation cannot have more than one residual!')
end
% Check that the non NaN equations have zero residuals (model and data consistency).
ido = setdiff(1:n, idr);
if ~isempty(find(abs(r(ido))>1e-6))
disp('Provided data and model are not consistent in equations:')
idx = find(abs(r)>1e-6);
c1 = 'Equation';
c1 = strvcat(c1, '--------');
for i = 1:length(idx)
c1 = strvcat(c1, sprintf(' %s', num2str(idx(i))));
end
c2 = 'Residual';
c2 = strvcat(c2, '--------');
for i = 1:length(idx)
c2 = strvcat(c2, sprintf('%s', num2str(r(idx(i)))));
end
c2 = strvcat(c2(1, :), repmat('-', 1, size(c2, 2)), c2(3:end,:));
c5 = 'Equation name';
c5 = strvcat(c5, '-------------');
for i = 1:length(idx)
c5 = strvcat(c5, sprintf(' %s', eqname(idx(i))));
end
c3 = repmat(' | ', size(c2, 1), 1);
c4 = repmat(' ', size(c2, 1), 1);
cc = [c4, c1, c3, c2, c3, c5];
skipline()
disp(cc)
skipline()
disp('Please check model and dataset.')
end
% Associate the residuals with equations equations evaluating to NaNs.
info.equations = cell(residuals.vobs, 1);
info.residualindex = cell(residuals.vobs, 1);
for i = 1:residuals.vobs
residualname = residuals.name{i};
info.residualindex(i) = {strmatch(residualname, allexogenousvariables.name, 'exact')};
tmpxdata = xdata;
tmpxdata(2, info.residualindex{i}) = 0;
r = dynamic_resid(y, tmpxdata(2,:), M_.params, zeros(n, 1));
info.equations(i) = { idr(find(~isnan(r(idr))))};
end
if displayresidualsequationmapping
c1 = 'Residual';
for i=1:length(info.residuals)
c1 = strvcat(c1, sprintf('%s', info.residuals{i}));
end
c1 = strvcat(c1(1,:), repmat('-', 1, size(c1, 2)), c1(2:end,:));
c2 = 'Equation';
for i=1:length(info.residuals)
c2 = strvcat(c2, sprintf(' %s', num2str(info.equations{i})));
end
c2 = strvcat(c2(1,:), repmat('-', 1, size(c2, 2)), c2(2:end,:));
c3 = repmat(' | ', size(c2, 1), 1);
c4 = repmat(' ', size(c2, 1), 1);
cc = [c4, c1, c3, c2];
skipline()
disp(cc)
skipline()
end
% Compute residuals
xdata(:,cell2mat(info.residualindex)) = 0;
rdata = NaN(residuals.nobs, residuals.vobs);
for t=2:size(xdata, 1)
y = [ydata(t-1,:)'; ydata(t,:)'; NaN(n, 1)];
r = dynamic_resid(y, xdata(t,:), M_.params, zeros(n, 1));
rdata(t,:) = transpose(r(cell2mat(info.equations)));
end
residuals = dseries(rdata, dbase.init, info.residuals);
|