File: simul_backward_linear_model.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (59 lines) | stat: -rw-r--r-- 2,872 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
function [simulations, errorflag] = simul_backward_linear_model(initialconditions, samplesize, options_, M_, oo_, innovations)
% [simulations, errorflag] = simul_backward_linear_model(initialconditions, samplesize, options_, M_, oo_, innovations)
% Simulates a stochastic linear backward looking model.
%
% INPUTS
% - initialconditions   [dseries]     initial conditions for the endogenous variables.
% - samplesize          [integer]     scalar, number of periods for the simulation.
% - options_            [struct]      Dynare's options_ global structure.
% - M_                  [struct]      Dynare's M_ global structure.
% - oo_                 [struct]      Dynare's oo_ global structure.
% - innovations         [double]      T*q matrix, innovations to be used for the simulation.
%
% OUTPUTS
% - oo_                 [struct]      Dynare's oo_ global structure.
% - errorflag           [logical]     scalar, equal to false iff the simulation did not fail.
%
% REMARKS
% [1] The innovations used for the simulation are saved in oo_.exo_simul, and the resulting paths for the endogenous
%     variables are saved in oo_.endo_simul.
% [2] The last input argument is not mandatory. If absent we use random draws and rescale them with the informations provided
%     through the shocks block.
% [3] If the first input argument is empty, the endogenous variables are initialized with 0, or if available with the informations
%     provided thrtough the histval block.

% Copyright © 2012-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

if M_.maximum_lead
    error('Model defined in %s.mod is not backward.', M_.fname)
end

if ~M_.maximum_lag
    error('Model defined in %s.mod is not backward.', M_.fname)
end

if nargin<6
    innovations = [];
end

[initialconditions, samplesize, innovations, options_, M_, oo_, endonames, exonames, dynamic_resid, dynamic_g1] = ...
    simul_backward_model_init(initialconditions, samplesize, options_, M_, oo_, innovations);

[ysim, xsim, errorflag] = simul_backward_linear_model_(initialconditions, samplesize, options_, M_, oo_, innovations, dynamic_resid, dynamic_g1);

simulations = [dseries(ysim', initialconditions.init, endonames(1:M_.orig_endo_nbr)), dseries(xsim, initialconditions.init, exonames)];