File: euler_equation_error.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (49 lines) | stat: -rw-r--r-- 2,190 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
function e = euler_equation_error(y0,x,innovations,M_,options_,oo_,pfm,nodes,weights)
% e = euler_equation_error(y0,x,innovations,M_,options_,oo_,pfm,nodes,weights)

% Copyright © 2016-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

dynamic_model = str2func([M_.fname '.dynamic']);
ep = options_.ep;
y1 = extended_path_core(ep.periods, ...
                        M_.endo_nbr, M_.exo_nbr, ...
                        innovations.positive_var_indx, ...
                        x, ep.init, y0, oo_.steady_state, ...
                        0, ...
                        ep.stochastic.order, M_, ...
                        pfm, ep.stochastic.algo, ...
                        ep.solve_algo, ...
                        ep.stack_solve_algo, ...
                        options_.lmmcp, options_, oo_, ...
                        []);
i_pred = find(M_.lead_lag_incidence(1,:));
i_fwrd = find(M_.lead_lag_incidence(3,:));
x1 = [x(2:end,:); zeros(1,M_.exo_nbr)];
for i=1:length(nodes)
    x2 = x1;
    x2(2,:) = x2(2,:) + nodes(i,:);
    y2 = extended_path_core(ep.periods, M_.endo_nbr, M_.exo_nbr, ...
                            innovations.positive_var_indx, x2, ep.init, ...
                            y1, oo_.steady_state, 0, ...
                            ep.stochastic.order, M_, pfm, ep.stochastic.algo, ...
                            ep.solve_algo, ep.stack_solve_algo, options_.lmmcp, ...
                            options_, oo_, []);
    z = [y0(i_pred); y1; y2(i_fwrd)];
    res(:,i) = dynamic_model(z,x,M_.params,oo_.steady_state,2);
end
e = res*weights;