1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
function [info_convergence, endo_simul] = extended_path_homotopy(endo_simul, exo_simul, M_, options_, oo_, pfm, ep, order, algo, method, debug)
% Copyright © 2016-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
endo_simul0 = endo_simul;
if ismember(method, [1, 2])
noconvergence = true;
iteration = 0;
weight = .1;
maxiter = 100;
increase_flag = false;
increase_factor = 1.2;
decrease_factor = 1.1;
state = false(5,1);
oldweight = weight;
while noconvergence
iteration = iteration + 1;
oo_.endo_simul = endo_simul;
oo_.endo_simul(:,1) = oo_.steady_state + weight*(endo_simul0(:,1) - oo_.steady_state);
oo_.exo_simul = bsxfun(@plus, weight*exo_simul, (1-weight)*transpose(oo_.exo_steady_state));
if order==0
[endo_simul_new, success] = perfect_foresight_solver_core(oo_.endo_simul, oo_.exo_simul, oo_.steady_state, oo_.exo_steady_state, M_, options_);
else
switch(algo)
case 0
[flag, endo_simul_new] = ...
solve_stochastic_perfect_foresight_model(endo_simul, exo_simul, pfm, ep.stochastic.quadrature.nodes, ep.stochastic.order);
case 1
[flag, endo_simul_new] = ...
solve_stochastic_perfect_foresight_model_1(endo_simul, exo_simul, options_, pfm, ep.stochastic.order);
end
end
if isequal(order, 0)
% Logical variable flag is false iff the solver fails.
flag = success;
else
% Fix convention issue on the value of flag.
flag = ~flag;
end
if debug
dprintf('%u\t %1.8f\t %u', iteration, weight, flag)
end
state(2:end) = state(1:end-1);
state(1) = flag;
if flag
if isequal(weight, 1)
noconvergence = false;
break
end
if all(state)
increase_factor = 1+(increase_factor-1)*1.1;
state = false(size(state));
end
oldweight = weight;
weight = min(weight*increase_factor, 1);
increase_flag = true;
endo_simul = endo_simul_new;
else
if increase_flag
weight = oldweight + (weight-oldweight)/100;
else
weight = min(weight/decrease_factor, 1);
end
end
if iteration>maxiter
break
end
if weight<1e-9
break
end
end
info_convergence = ~noconvergence;
end
if isequal(method, 3) || (isequal(method, 2) && noconvergence)
if isequal(method, 2)
endo_simul = endo_simul0;
end
weights = 0:(1/1000):1;
noconvergence = true;
index = 1;
jndex = 0;
nweights = length(weights);
while noconvergence
weight = weights(index);
oo_.endo_simul = endo_simul;
oo_.exo_simul = bsxfun(@plus, weight*exo_simul, (1-weight)*transpose(oo_.exo_steady_state));
if order==0
[endo_simul_new, success] = perfect_foresight_solver_core(oo_.endo_simul, oo_.exo_simul, oo_.steady_state, oo_.exo_steady_state, M_, options_);
else
switch(algo)
case 0
[flag, endo_simul_new] = ...
solve_stochastic_perfect_foresight_model(endo_simul, exo_simul, pfm, ep.stochastic.quadrature.nodes, ep.stochastic.order);
case 1
[flag, endo_simul_new] = ...
solve_stochastic_perfect_foresight_model_1(endo_simul, exo_simul, options_, pfm, ep.stochastic.order);
end
end
if isequal(order, 0)
% Logical variable flag is false iff the solver fails.
flag = success;
else
% Fix convention issue on the value of flag.
flag = ~flag;
end
if debug
dprintf('%u\t %1.8f\t %u', index, weight, flag)
end
if flag
jndex = index;
if isequal(weight, 1)
noconvergence = false;
continue
end
index = index+1;
endo_simul = endo_simul_new;
else
break
end
end
info_convergence = ~noconvergence;
end
|