1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
function [initial_conditions, innovations, pfm, ep, verbosity, options_, oo_] = extended_path_initialization(initial_conditions, sample_size, exogenousvariables, options_, M_, oo_)
% [initial_conditions, innovations, pfm, ep, verbosity, options_, oo_] = extended_path_initialization(initial_conditions, sample_size, exogenousvariables, options_, M_, oo_)
% Initialization of the extended path routines.
%
% INPUTS
% o initial_conditions [double] m*1 array, where m is the number of endogenous variables in the model.
% o sample_size [integer] scalar, size of the sample to be simulated.
% o exogenousvariables [double] T*n array, values for the structural innovations.
% o options_ [struct] Dynare's options structure
% o M_ [struct] Dynare's model structure
% o oo_ [struct] Dynare's result structure
%
% OUTPUTS
%
% ALGORITHM
%
% SPECIAL REQUIREMENTS
% Copyright © 2016-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
ep = options_.ep;
% Set verbosity levels.
options_.verbosity = ep.verbosity;
verbosity = ep.verbosity+ep.debug;
% Set maximum number of iterations for the deterministic solver.
options_.simul.maxit = ep.maxit;
% Prepare a structure needed by the matlab implementation of the perfect foresight model solver
pfm = setup_stochastic_perfect_foresight_model_solver(M_, options_, oo_);
% Check that the user did not use varexo_det
if M_.exo_det_nbr~=0
error('Extended path does not support varexo_det.')
end
% Set default initial conditions.
if isempty(initial_conditions)
if isempty(M_.endo_histval)
initial_conditions = oo_.steady_state;
else
initial_conditions = M_.endo_histval;
end
end
% Set the number of periods for the (stochastic) perfect foresight model
pfm.periods = ep.periods;
pfm.i_upd = pfm.ny+(1:pfm.periods*pfm.ny);
pfm.block = options_.block;
% Set the algorithm for the perfect foresight solver
options_.stack_solve_algo = ep.stack_solve_algo;
% Compute the first order reduced form if needed.
dr = struct();
if ep.init
options_.order = 1;
oo_.dr=set_state_space(dr,M_);
[oo_.dr,info,M_.params] = resol(0,M_,options_,oo_.dr,oo_.steady_state, oo_.exo_steady_state, oo_.exo_det_steady_state);
if info(1)
print_info(info,options_.noprint,options_);
end
end
% Do not use a minimal number of perdiods for the perfect foresight solver (with bytecode and blocks)
options_.minimal_solving_period = options_.ep.periods;
% Set the covariance matrix of the structural innovations.
if isempty(exogenousvariables)
innovations = struct();
innovations.positive_var_indx = find(diag(M_.Sigma_e)>0);
innovations.effective_number_of_shocks = length(innovations.positive_var_indx);
innovations.covariance_matrix = M_.Sigma_e(innovations.positive_var_indx,innovations.positive_var_indx);
innovations.covariance_matrix_upper_cholesky = chol(innovations.covariance_matrix);
else
innovations = struct();
end
% Set seed.
if ep.set_dynare_seed_to_default
options_=set_dynare_seed_local_options(options_,'default');
end
% hybrid correction
pfm.hybrid_order = ep.stochastic.hybrid_order;
if pfm.hybrid_order
oo_.dr = set_state_space(oo_.dr, M_);
options = options_;
options.order = pfm.hybrid_order;
[pfm.dr, M_.params] = resol(0, M_, options, oo_.dr, oo_.steady_state, oo_.exo_steady_state, oo_.exo_det_steady_state);
else
pfm.dr = [];
end
% number of nonzero derivatives
pfm.nnzA = M_.NNZDerivatives(1);
% setting up integration nodes if order > 0
if ep.stochastic.order > 0
[nodes,weights,nnodes] = setup_integration_nodes(options_.ep,pfm);
pfm.nodes = nodes;
pfm.weights = weights;
pfm.nnodes = nnodes;
% compute number of blocks
[block_nbr,pfm.world_nbr] = get_block_world_nbr(ep.stochastic.algo,nnodes,ep.stochastic.order,ep.periods);
else
block_nbr = ep.periods;
end
% set boundaries if mcp
[lb,ub,pfm.eq_index] = get_complementarity_conditions(M_, options_.ramsey_policy);
if options_.ep.solve_algo == 10
options_.lmmcp.lb = repmat(lb,block_nbr,1);
options_.lmmcp.ub = repmat(ub,block_nbr,1);
elseif options_.ep.solve_algo == 11
options_.mcppath.lb = repmat(lb,block_nbr,1);
options_.mcppath.ub = repmat(ub,block_nbr,1);
end
pfm.block_nbr = block_nbr;
|