File: solve_stochastic_perfect_foresight_model.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (236 lines) | stat: -rw-r--r-- 8,048 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
function [flag,endo_simul,err] = solve_stochastic_perfect_foresight_model(endo_simul,exo_simul,pfm,nnodes,order)

% Copyright © 2012-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

flag = 0;
err = 0;
stop = 0;

params = pfm.params;
steady_state = pfm.steady_state;
ny = pfm.ny;
periods = pfm.periods;
dynamic_model = pfm.dynamic_model;
lead_lag_incidence = pfm.lead_lag_incidence;
lead_lag_incidence_t = transpose(lead_lag_incidence);
nyp = pfm.nyp;
nyf = pfm.nyf;
i_cols_1 = pfm.i_cols_1;
i_cols_j = pfm.i_cols_j;
i_cols_T = nonzeros(lead_lag_incidence(1:2,:)');

maxit = pfm.maxit_;
tolerance = pfm.tolerance;
verbose = pfm.verbose;

number_of_shocks = size(exo_simul,2);

[nodes,weights] = gauss_hermite_weights_and_nodes(nnodes);

if number_of_shocks>1
    nodes = repmat(nodes,1,number_of_shocks)*chol(pfm.Sigma);
    % to be fixed for Sigma ~= I
    for i=number_of_shocks:-1:1
        rr(i) = {nodes(:,i)};
        ww(i) = {weights};
    end
    nodes = cartesian_product_of_sets(rr{:});
    weights = prod(cartesian_product_of_sets(ww{:}),2);
    nnodes = nnodes^number_of_shocks;
else
    nodes = nodes*sqrt(pfm.Sigma);
end

if verbose
    disp (' -----------------------------------------------------');
    disp ('MODEL SIMULATION :');
    fprintf('\n');
end

z = endo_simul(lead_lag_incidence_t(:)>0);
[~, jacobian] = dynamic_model(z, exo_simul, params,steady_state, 2);

% Each column of Y represents a different world
% The upper right cells are unused
% The first row block is ny x 1
% The second row block is ny x nnodes
% The third row block is ny x nnodes^2
% and so on until size ny x nnodes^order
world_nbr = nnodes^order;
Y = repmat(endo_simul(:),1,world_nbr);

% The columns of A map the elements of Y such that
% each block of Y with ny rows are unfolded column wise
dimension = ny*(sum(nnodes.^(0:order-1),2)+(periods-order)*world_nbr);
if order == 0
    i_upd_r = (1:ny*periods);
    i_upd_y = i_upd_r + ny;
else
    i_upd_r = zeros(dimension,1);
    i_upd_y = i_upd_r;
    i_upd_r(1:ny) = (1:ny);
    i_upd_y(1:ny) = ny+(1:ny);
    i1 = ny+1;
    i2 = 2*ny;
    n1 = ny+1;
    n2 = 2*ny;
    for i=2:periods
        for j=1:nnodes^min(i-1,order)
            i_upd_r(i1:i2) = (n1:n2)+(j-1)*ny*periods;
            i_upd_y(i1:i2) = (n1:n2)+ny+(j-1)*ny*(periods+2);
            i1 = i2+1;
            i2 = i2+ny;
        end
        n1 = n2+1;
        n2 = n2+ny;
    end
end
if rows(lead_lag_incidence)>2
    icA = [find(lead_lag_incidence(1,:)) find(lead_lag_incidence(2,:))+world_nbr*ny ...
           find(lead_lag_incidence(3,:))+2*world_nbr*ny]';
else
    if nyf
        icA = [find(lead_lag_incidence(2,:))+world_nbr*ny find(lead_lag_incidence(3,:))+2*world_nbr*ny ]';
    else
        icA = [find(lead_lag_incidence(1,:)) find(lead_lag_incidence(2,:))+world_nbr*ny ]';
    end
end
h1 = clock;
for iter = 1:maxit
    A1 = sparse([],[],[],ny*(sum(nnodes.^(0:order-1),2)+1),dimension,(order+1)*world_nbr*nnz(jacobian));
    res = zeros(ny,periods,world_nbr);
    i_rows = 1:ny;
    i_cols = find(lead_lag_incidence');
    i_cols_p = i_cols(1:nyp);
    i_cols_s = i_cols(nyp+(1:ny));
    i_cols_f = i_cols(nyp+ny+(1:nyf));
    i_cols_Ap = i_cols_p;
    i_cols_As = i_cols_s;
    i_cols_Af = i_cols_f - ny;
    for i = 1:order+1
        i_w_p = 1;
        for j = 1:nnodes^(i-1)
            innovation = exo_simul;
            if i > 1
                innovation(i+1,:) = nodes(mod(j-1,nnodes)+1,:);
            end
            if i <= order
                for k=1:nnodes
                    y = [Y(i_cols_p,i_w_p);
                         Y(i_cols_s,j);
                         Y(i_cols_f,(j-1)*nnodes+k)];
                    [d1,jacobian] = dynamic_model(y,innovation,params,steady_state,i+1);
                    if i == 1
                        % in first period we don't keep track of
                        % predetermined variables
                        i_cols_A = [i_cols_As - ny; i_cols_Af];
                        A1(i_rows,i_cols_A) = A1(i_rows,i_cols_A) + weights(k)*jacobian(:,i_cols_1);
                    else
                        i_cols_A = [i_cols_Ap; i_cols_As; i_cols_Af];
                        A1(i_rows,i_cols_A) = A1(i_rows,i_cols_A) + weights(k)*jacobian(:,i_cols_j);
                    end
                    res(:,i,j) = res(:,i,j)+weights(k)*d1;
                    i_cols_Af = i_cols_Af + ny;
                end
            else
                y = [Y(i_cols_p,i_w_p);
                     Y(i_cols_s,j);
                     Y(i_cols_f,j)];
                [d1,jacobian] = dynamic_model(y,innovation,params,steady_state,i+1);
                if i == 1
                    % in first period we don't keep track of
                    % predetermined variables
                    i_cols_A = [i_cols_As - ny; i_cols_Af];
                    A1(i_rows,i_cols_A) = jacobian(:,i_cols_1);
                else
                    i_cols_A = [i_cols_Ap; i_cols_As; i_cols_Af];
                    A1(i_rows,i_cols_A) = jacobian(:,i_cols_j);
                end
                res(:,i,j) = d1;
                i_cols_Af = i_cols_Af + ny;
            end
            i_rows = i_rows + ny;
            if mod(j,nnodes) == 0
                i_w_p = i_w_p + 1;
            end
            if i > 1
                if mod(j,nnodes) == 0
                    i_cols_Ap = i_cols_Ap + ny;
                end
                i_cols_As = i_cols_As + ny;
            end
        end
        i_cols_p = i_cols_p + ny;
        i_cols_s = i_cols_s + ny;
        i_cols_f = i_cols_f + ny;
    end
    nzA = cell(periods,world_nbr);
    for j=1:world_nbr
        i_rows_y = find(lead_lag_incidence')+(order+1)*ny;
        offset_c = ny*(sum(nnodes.^(0:order-1),2)+j-1);
        offset_r = (j-1)*ny;
        for i=order+2:periods
            [d1,jacobian] = dynamic_model(Y(i_rows_y,j), ...
                                          exo_simul,params, ...
                                          steady_state,i+1);
            if i == periods
                [ir,ic,v] = find(jacobian(:,i_cols_T));
            else
                [ir,ic,v] = find(jacobian(:,i_cols_j));
            end
            nzA{i,j} = [offset_r+ir,offset_c+icA(ic), v]';
            res(:,i,j) = d1;
            i_rows_y = i_rows_y + ny;
            offset_c = offset_c + world_nbr*ny;
            offset_r = offset_r + world_nbr*ny;
        end
    end
    err = max(abs(res(i_upd_r)));
    if err < tolerance
        stop = 1;
        if verbose
            fprintf('\n') ;
            disp([' Total time of simulation        :' num2str(etime(clock,h1))]) ;
            fprintf('\n') ;
            disp(' Convergency obtained.') ;
            fprintf('\n') ;
        end
        flag = 0;% Convergency obtained.
        endo_simul = reshape(Y(:,1),ny,periods+2);
        break
    end
    A2 = [nzA{:}]';
    A = [A1; sparse(A2(:,1),A2(:,2),A2(:,3),ny*(periods-order-1)*world_nbr,dimension)];
    dy = -A\res(i_upd_r);
    Y(i_upd_y) =   Y(i_upd_y) + dy;
end

if ~stop
    if verbose
        fprintf('\n') ;
        disp(['     Total time of simulation        :' num2str(etime(clock,h1))]) ;
        fprintf('\n') ;
        disp('WARNING : maximum number of iterations is reached (modify options_.simul.maxit).') ;
        fprintf('\n') ;
    end
    flag = 1;% more iterations are needed.
    endo_simul = 1;
end
if verbose
    disp ('-----------------------------------------------------') ;
end