File: dsge_simulated_theoretical_covariance.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (187 lines) | stat: -rw-r--r-- 7,675 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
function [nvar,vartan,CovarFileNumber] = dsge_simulated_theoretical_covariance(SampleSize,nar,M_,options_,oo_,type)
% function [nvar,vartan,CovarFileNumber] = dsge_simulated_theoretical_covariance(SampleSize,nar,M_,options_,oo_,type)
% This function computes the posterior or prior distribution of the endogenous
% variables second order moments.
%
% INPUTS
%   SampleSize   [integer]       scalar, number of simulations.
%   M_           [structure]     Dynare structure describing the model.
%   options_     [structure]     Dynare structure defining global options.
%   oo_          [structure]     Dynare structure where the results are saved.
%   type         [string]        'prior' or 'posterior'
%
%
% OUTPUTS
%   nvar              [integer]  nvar is the number of stationary variables.
%   vartan            [char]     array of characters (with nvar rows).
%   CovarFileNumber   [integer]  scalar, number of prior or posterior data files (for covariance).

% Copyright © 2007-2021 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

nodecomposition = 1;

% Get informations about the _posterior_draws files.
if strcmpi(type,'posterior')
    NumberOfDrawsFiles = length(dir([M_.dname '/metropolis/' M_.fname '_' type '_draws*' ]));
    posterior = 1;
elseif strcmpi(type,'prior')
    NumberOfDrawsFiles = length(dir([M_.dname '/prior/draws/' type '_draws*' ]));
    CheckPath('prior/moments',M_.dname);
    posterior = 0;
else
    error('dsge_simulated_theoretical_covariance:: Unknown type!')
end

%delete old stale files before creating new ones
if posterior
    delete_stale_file([M_.dname '/metropolis/' M_.fname '_Posterior2ndOrderMoments*'])
    delete_stale_file([M_.dname '/metropolis/' M_.fname '_PosteriorCorrelations*']);
else
    delete_stale_file([M_.dname '/prior/moments/' M_.fname '_Prior2ndOrderMoments*'])
    delete_stale_file([M_.dname '/prior/moments/' M_.fname '_PriorCorrelations*']);
end

% Set varlist (vartan)
if ~posterior
    if isfield(options_,'varlist')
        temp = options_.varlist;
    end
    options_.varlist = options_.prior_analysis_endo_var_list;
end
endo_names=options_.varlist;
[ivar,vartan] = get_variables_list(options_,M_);
if ~posterior
    if exist('temp','var')
        options_.varlist = temp;
    end
end
nvar = length(ivar);

if options_.pruning
    obs_var=NaN(nvar,1);
    for i=1:nvar
        obs_var(i,1) = find(strcmp(M_.endo_names(ivar(i),:), M_.endo_names(oo_.dr.order_var)));
    end
end

options_.ar = nar;

% Number of lines in posterior data files.
MaXNumberOfCovarLines = ceil(options_.MaxNumberOfBytes/(nvar*(nvar+1)/2)/8);
MaXNumberOfCorrLines = ceil(options_.MaxNumberOfBytes/(nvar*nvar*nar)/8);

if SampleSize<=MaXNumberOfCovarLines
    Covariance_matrix = zeros(SampleSize,nvar*(nvar+1)/2);
    NumberOfCovarFiles = 1;
else
    Covariance_matrix = zeros(MaXNumberOfCovarLines,nvar*(nvar+1)/2);
    NumberOfLinesInTheLastCovarFile = mod(SampleSize,MaXNumberOfCovarLines);
    NumberOfCovarFiles = ceil(SampleSize/MaXNumberOfCovarLines);
end
if SampleSize<=MaXNumberOfCorrLines
    Correlation_array = zeros(SampleSize,nvar,nvar,nar);
    NumberOfCorrFiles = 1;
else
    Correlation_array = zeros(MaXNumberOfCorrLines,nvar,nvar,nar);
    NumberOfLinesInTheLastCorrFile = mod(SampleSize,MaXNumberOfCorrLines);
    NumberOfCorrFiles = ceil(SampleSize/MaXNumberOfCorrLines);
end

NumberOfCovarLines = rows(Covariance_matrix);
CovarFileNumber = 1;
NumberOfCorrLines = rows(Correlation_array);
CorrFileNumber = 1;

% Compute 2nd order moments and save them in *_[Posterior, Prior]2ndOrderMoments* files
linea_cov = 0;
linea_corr = 0;
for file = 1:NumberOfDrawsFiles
    if posterior
        temp=load([M_.dname '/metropolis/' M_.fname '_' type '_draws' num2str(file) ]);
    else
        temp=load([M_.dname '/prior/draws/' type '_draws' num2str(file) ]);
    end
    NumberOfDraws = rows(temp.pdraws);
    isdrsaved = columns(temp.pdraws)-1;
    for linee = 1:NumberOfDraws
        linea_cov = linea_cov+1;
        linea_corr = linea_corr+1;
        if isdrsaved
            M_=set_parameters_locally(M_,temp.pdraws{linee,1});% Needed to update the covariance matrix of the state innovations.
            dr = temp.pdraws{linee,2};
        else
            M_=set_parameters_locally(M_,temp.pdraws{linee,1});
            [dr,~,M_.params] = compute_decision_rules(M_,options_,oo_.dr, oo_.steady_state, oo_.exo_steady_state, oo_.exo_det_steady_state);
        end
        if ~options_.pruning
            tmp = th_autocovariances(dr,ivar,M_,options_,nodecomposition);
        else
            pruned_state_space = pruned_SS.pruned_state_space_system(M_, options_, dr, obs_var, options_.ar, 1, 0);
            tmp{1} = pruned_state_space.Var_y;            
            for i=1:nar
                tmp{i+1} = pruned_state_space.Corr_yi(:,:,i);                
            end
        end
        for i=1:nvar
            for j=i:nvar
                Covariance_matrix(linea_cov,symmetric_matrix_index(i,j,nvar)) = tmp{1}(i,j);
            end
        end
        for i=1:nar
            Correlation_array(linea_corr,:,:,i) = tmp{i+1};
        end

        if linea_cov == NumberOfCovarLines
            if posterior
                save([ M_.dname '/metropolis/' M_.fname '_Posterior2ndOrderMoments' int2str(CovarFileNumber) '.mat' ],'Covariance_matrix','endo_names');
            else
                save([ M_.dname '/prior/moments/' M_.fname '_Prior2ndOrderMoments' int2str(CovarFileNumber) '.mat' ],'Covariance_matrix','endo_names');
            end
            CovarFileNumber = CovarFileNumber + 1;
            linea_cov = 0;
            test = CovarFileNumber-NumberOfCovarFiles;
            if ~test% Prepare the last round...
                Covariance_matrix = zeros(NumberOfLinesInTheLastCovarFile,nvar*(nvar+1)/2);
                NumberOfCovarLines = NumberOfLinesInTheLastCovarFile;
            elseif test<0
                Covariance_matrix = zeros(MaXNumberOfCovarLines,nvar*(nvar+1)/2);
            else
                clear('Covariance_matrix');
            end
        end
        if linea_corr == NumberOfCorrLines
            if posterior
                save([ M_.dname '/metropolis/' M_.fname '_PosteriorCorrelations' int2str(CorrFileNumber) '.mat' ],'Correlation_array','endo_names');
            else
                save([ M_.dname '/prior/moments/' M_.fname '_PriorCorrelations' int2str(CorrFileNumber) '.mat' ],'Correlation_array','endo_names');
            end
            CorrFileNumber = CorrFileNumber + 1;
            linea_corr = 0;
            test = CorrFileNumber-NumberOfCorrFiles;
            if ~test% Prepare the last round...
                Correlation_array = zeros(NumberOfLinesInTheLastCorrFile,nvar,nvar,nar);
                NumberOfCorrLines = NumberOfLinesInTheLastCorrFile;
                CorrFileNumber = CorrFileNumber - 1;
            elseif test<0
                Correlation_array = zeros(MaXNumberOfCorrLines,nvar,nvar,nar);
            else
                clear('Correlation_array');
            end
        end        
    end
end