1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
function [fval,info,exit_flag,grad,hess,SteadyState,trend_coeff,PHI_tilde,SIGMA_u_tilde,iXX,prior] = dsge_var_likelihood(xparam1,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,BoundsInfo,dr, endo_steady_state, exo_steady_state, exo_det_steady_state)
% [fval,info,exit_flag,grad,hess,SteadyState,trend_coeff,PHI_tilde,SIGMA_u_tilde,iXX,prior] = dsge_var_likelihood(xparam1,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,BoundsInfo,dr, endo_steady_state, exo_steady_state, exo_det_steady_state)
% Evaluates the posterior kernel of the BVAR-DSGE model.
%
% INPUTS
% o xparam1 [double] Vector of model's parameters.
% o gend [integer] Number of observations (without conditionning observations for the lags).
% o dataset_ [dseries] object storing the dataset
% o dataset_info [structure] storing informations about the sample.
% o options_ [structure] describing the options
% o M_ [structure] decribing the model
% o estim_params_ [structure] characterizing parameters to be estimated
% o bayestopt_ [structure] describing the priors
% o BoundsInfo [structure] containing prior bounds
% o dr [structure] Reduced form model.
% o endo_steady_state [vector] steady state value for endogenous variables
% o exo_steady_state [vector] steady state value for exogenous variables
% o exo_det_steady_state [vector] steady state value for exogenous deterministic variables
%
% OUTPUTS
% o fval [double] Value of the posterior kernel at xparam1.
% o info [integer] Vector of informations about the penalty.
% o exit_flag [integer] Zero if the function returns a penalty, one otherwise.
% o grad [double] place holder for gradient of the likelihood
% currently not supported by dsge_var
% o hess [double] place holder for hessian matrix of the likelihood
% currently not supported by dsge_var
% o SteadyState [double] Steady state vector possibly recomputed
% by call to dynare_resolve()
% o trend_coeff [double] place holder for trend coefficients,
% currently not supported by dsge_var
% o PHI_tilde [double] Stacked BVAR-DSGE autoregressive matrices (at the mode associated to xparam1);
% formula (28), DS (2004)
% o SIGMA_u_tilde [double] Covariance matrix of the BVAR-DSGE (at the mode associated to xparam1),
% formula (29), DS (2004)
% o iXX [double] inv(lambda*T*Gamma_XX^*+ X'*X)
% o prior [double] a matlab structure describing the dsge-var prior
% - SIGMA_u_star: prior covariance matrix, formula (23), DS (2004)
% - PHI_star: prior autoregressive matrices, formula (22), DS (2004)
% - ArtificialSampleSize: number of artificial observations from the prior (T^* in DS (2004))
% - DF = prior.ArtificialSampleSize - NumberOfParameters - NumberOfObservedVariables;
% - iGXX_star: theoretical covariance of regressors ({\Gamma_{XX}^*}^{-1} in DS (2004))
%
% ALGORITHMS
% Follows the computations outlined in Del Negro/Schorfheide (2004):
% Priors from general equilibrium models for VARs, International Economic
% Review, 45(2), pp. 643-673
%
% SPECIAL REQUIREMENTS
% None.
% Copyright © 2006-2023Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
% Initialize some of the output arguments.
fval = [];
exit_flag = 1;
grad=[];
hess=[];
info = zeros(4,1);
PHI_tilde = [];
SIGMA_u_tilde = [];
iXX = [];
prior = [];
trend_coeff=[];
% Ensure that xparam1 is a column vector.
% (Don't do the transformation if xparam1 is empty, otherwise it would become a
% 0×1 matrix, which create issues with older MATLABs when comparing with [] in
% check_bounds_and_definiteness_estimation)
if ~isempty(xparam1)
xparam1 = xparam1(:);
end
% Initialization of of the index for parameter dsge_prior_weight in M_.params.
dsge_prior_weight_idx = strmatch('dsge_prior_weight', M_.param_names);
% Get the number of estimated (dsge) parameters.
nx = estim_params_.nvx + estim_params_.np;
% Get the number of observed variables in the VAR model.
NumberOfObservedVariables = dataset_.vobs;
% Get the number of observations.
NumberOfObservations = dataset_.nobs;
% Get the number of lags in the VAR model.
NumberOfLags = options_.dsge_varlag;
% Get the number of parameters in the VAR model.
NumberOfParameters = NumberOfObservedVariables*NumberOfLags ;
if ~options_.noconstant
NumberOfParameters = NumberOfParameters + 1;
end
% Get empirical second order moments for the observed variables.
mYY= dataset_info.mYY;
mYX= dataset_info.mYX;
mXX= dataset_info.mXX;
M_ = set_all_parameters(xparam1,estim_params_,M_);
[fval,info,exit_flag,Q]=check_bounds_and_definiteness_estimation(xparam1, M_, estim_params_, BoundsInfo);
if info(1)
return
end
% Get the weight of the dsge prior.
dsge_prior_weight = M_.params(dsge_prior_weight_idx);
% Is the dsge prior proper?
if dsge_prior_weight<(NumberOfParameters+NumberOfObservedVariables)/NumberOfObservations
fval = Inf;
exit_flag = 0;
info(1) = 51;
info(2)=dsge_prior_weight;
info(3)=(NumberOfParameters+NumberOfObservedVariables)/dataset_.nobs;
info(4)=abs(NumberOfObservations*dsge_prior_weight-(NumberOfParameters+NumberOfObservedVariables));
return
end
%------------------------------------------------------------------------------
% 2. call model setup & reduction program
%------------------------------------------------------------------------------
% Solve the Dsge model and get the matrices of the reduced form solution. T and R are the matrices of the
% state equation
[T,R,SteadyState,info] = dynare_resolve(M_,options_, dr, endo_steady_state, exo_steady_state, exo_det_steady_state,'restrict');
% Return, with endogenous penalty when possible, if dynare_resolve issues an error code (defined in resol).
if info(1)
if info(1) == 3 || info(1) == 4 || info(1) == 5 || info(1)==6 ||info(1) == 19 ||...
info(1) == 20 || info(1) == 21 || info(1) == 23 || info(1) == 26 || ...
info(1) == 81 || info(1) == 84 || info(1) == 85
%meaningful second entry of output that can be used
fval = Inf;
info(4) = info(2);
exit_flag = 0;
return
else
fval = Inf;
info(4) = 0.1;
exit_flag = 0;
return
end
end
% Define the mean/steady state vector.
if ~options_.noconstant
if options_.loglinear
constant = transpose(log(SteadyState(bayestopt_.mfys)));
else
constant = transpose(SteadyState(bayestopt_.mfys));
end
else
constant = zeros(1,NumberOfObservedVariables);
end
%------------------------------------------------------------------------------
% 3. theoretical moments (second order)
%------------------------------------------------------------------------------
% Compute the theoretical second order moments
tmp0 = lyapunov_symm(T,R*Q*R',options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold, [], options_.debug);
mf = bayestopt_.mf1;
% Get the non centered second order moments
TheoreticalAutoCovarianceOfTheObservedVariables = zeros(NumberOfObservedVariables,NumberOfObservedVariables,NumberOfLags+1);
TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1) = tmp0(mf,mf)+constant'*constant;
for lag = 1:NumberOfLags
tmp0 = T*tmp0;
TheoreticalAutoCovarianceOfTheObservedVariables(:,:,lag+1) = tmp0(mf,mf) + constant'*constant;
end
% Build the theoretical "covariance" between Y and X
GYX = zeros(NumberOfObservedVariables,NumberOfParameters);
for i=1:NumberOfLags
GYX(:,(i-1)*NumberOfObservedVariables+1:i*NumberOfObservedVariables) = TheoreticalAutoCovarianceOfTheObservedVariables(:,:,i+1);
end
if ~options_.noconstant
GYX(:,end) = constant';
end
% Build the theoretical "covariance" between X and X
GXX = kron(eye(NumberOfLags), TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1));
for i = 1:NumberOfLags-1
tmp1 = diag(ones(NumberOfLags-i,1),i);
tmp2 = diag(ones(NumberOfLags-i,1),-i);
GXX = GXX + kron(tmp1,TheoreticalAutoCovarianceOfTheObservedVariables(:,:,i+1));
GXX = GXX + kron(tmp2,TheoreticalAutoCovarianceOfTheObservedVariables(:,:,i+1)');
end
if ~options_.noconstant
% Add one row and one column to GXX
GXX = [GXX , kron(ones(NumberOfLags,1),constant') ; [ kron(ones(1,NumberOfLags),constant) , 1] ];
end
GYY = TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1);
iGXX = inv(GXX);
PHI_star = iGXX*transpose(GYX); %formula (22), DS (2004)
SIGMA_u_star=GYY - GYX*PHI_star; %formula (23), DS (2004)
[SIGMA_u_star_is_positive_definite, penalty] = ispd(SIGMA_u_star);
if ~SIGMA_u_star_is_positive_definite
fval = Inf;
info(1) = 53;
info(4) = penalty;
exit_flag = 0;
return
end
if ~isinf(dsge_prior_weight)% Evaluation of the likelihood of the dsge-var model when the dsge prior weight is finite.
tmp0 = dsge_prior_weight*NumberOfObservations*TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1) + mYY ; %first term of square bracket in formula (29), DS (2004)
tmp1 = dsge_prior_weight*NumberOfObservations*GYX + mYX; %first element of second term of square bracket in formula (29), DS (2004)
tmp2 = inv(dsge_prior_weight*NumberOfObservations*GXX+mXX); %middle element of second term of square bracket in formula (29), DS (2004)
SIGMA_u_tilde = tmp0 - tmp1*tmp2*tmp1'; %square bracket term in formula (29), DS (2004)
clear('tmp0');
[SIGMAu_is_positive_definite, penalty] = ispd(SIGMA_u_tilde);
if ~SIGMAu_is_positive_definite
fval = Inf;
info(1) = 52;
info(4) = penalty;
exit_flag = 0;
return
end
SIGMA_u_tilde = SIGMA_u_tilde / (NumberOfObservations*(1+dsge_prior_weight)); %prefactor of formula (29), DS (2004)
PHI_tilde = tmp2*tmp1'; %formula (28), DS (2004)
clear('tmp1');
prodlng1 = sum(gammaln(.5*((1+dsge_prior_weight)*NumberOfObservations- ...
NumberOfParameters ...
+1-(1:NumberOfObservedVariables)'))); %last term in numerator of third line of (A.2), DS (2004)
prodlng2 = sum(gammaln(.5*(dsge_prior_weight*NumberOfObservations- ...
NumberOfParameters ...
+1-(1:NumberOfObservedVariables)'))); %last term in denominator of third line of (A.2), DS (2004)
%Compute minus log likelihood according to (A.2), DS (2004)
lik = .5*NumberOfObservedVariables*log(det(dsge_prior_weight*NumberOfObservations*GXX+mXX)) ... %first term in numerator of second line of (A.2), DS (2004)
+ .5*((dsge_prior_weight+1)*NumberOfObservations-NumberOfParameters)*log(det((dsge_prior_weight+1)*NumberOfObservations*SIGMA_u_tilde)) ... %second term in numerator of second line of (A.2), DS (2004)
- .5*NumberOfObservedVariables*log(det(dsge_prior_weight*NumberOfObservations*GXX)) ... %first term in denominator of second line of (A.2), DS (2004)
- .5*(dsge_prior_weight*NumberOfObservations-NumberOfParameters)*log(det(dsge_prior_weight*NumberOfObservations*SIGMA_u_star)) ... %second term in denominator of second line of (A.2), DS (2004)
+ .5*NumberOfObservedVariables*NumberOfObservations*log(2*pi) ... %first term in numerator of third line of (A.2), DS (2004)
- .5*log(2)*NumberOfObservedVariables*((dsge_prior_weight+1)*NumberOfObservations-NumberOfParameters) ... %second term in numerator of third line of (A.2), DS (2004)
+ .5*log(2)*NumberOfObservedVariables*(dsge_prior_weight*NumberOfObservations-NumberOfParameters) ... %first term in denominator of third line of (A.2), DS (2004)
- prodlng1 + prodlng2;
else% Evaluation of the likelihood of the dsge-var model when the dsge prior weight is infinite.
PHI_star = iGXX*transpose(GYX);
%Compute minus log likelihood according to (33), DS (2004) (where the last term in the trace operator has been multiplied out)
lik = NumberOfObservations * ( log(det(SIGMA_u_star)) + NumberOfObservedVariables*log(2*pi) + ...
trace(inv(SIGMA_u_star)*(mYY - transpose(mYX*PHI_star) - mYX*PHI_star + transpose(PHI_star)*mXX*PHI_star)/NumberOfObservations));
lik = .5*lik;% Minus likelihood
SIGMA_u_tilde=SIGMA_u_star;
PHI_tilde=PHI_star;
end
if isnan(lik)
fval = Inf;
info(1) = 45;
info(4) = 0.1;
exit_flag = 0;
return
end
if imag(lik)~=0
fval = Inf;
info(1) = 46;
info(4) = 0.1;
exit_flag = 0;
return
end
% Add the (logged) prior density for the dsge-parameters.
lnprior = priordens(xparam1,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7,bayestopt_.p3,bayestopt_.p4);
fval = (lik-lnprior);
if isnan(fval)
fval = Inf;
info(1) = 47;
info(4) = 0.1;
exit_flag = 0;
return
end
if imag(fval)~=0
fval = Inf;
info(1) = 48;
info(4) = 0.1;
exit_flag = 0;
return
end
if isinf(fval)
fval = Inf;
info(1) = 50;
info(4) = 0.1;
exit_flag = 0;
return
end
if (nargout >= 10)
if isinf(dsge_prior_weight)
iXX = iGXX;
else
iXX = tmp2;
end
end
if (nargout==11)
prior.SIGMA_u_star = SIGMA_u_star;
prior.PHI_star = PHI_star;
prior.ArtificialSampleSize = fix(dsge_prior_weight*NumberOfObservations);
prior.DF = prior.ArtificialSampleSize - NumberOfParameters - NumberOfObservedVariables;
prior.iGXX_star = iGXX;
end
|