File: dynare_estimation_init.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (558 lines) | stat: -rw-r--r-- 25,623 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
function [dataset_, dataset_info, xparam1, hh, M_, options_, oo_, estim_params_,bayestopt_, bounds] = dynare_estimation_init(var_list_, dname, gsa_flag, M_, options_, oo_, estim_params_, bayestopt_)

% Performs initialization tasks before estimation or global sensitivity analysis
%
% INPUTS
%   var_list_:      selected endogenous variables vector
%   dname:          alternative directory name
%   gsa_flag:       flag for GSA operation (optional)
%   M_:             structure storing the model information
%   options_:       structure storing the options
%   oo_:            structure storing the results
%   estim_params_:  structure storing information about estimated
%                   parameters
%   bayestopt_:     structure storing information about priors

% OUTPUTS
%   dataset_:       the dataset after required transformation
%   dataset_info:   Various informations about the dataset (descriptive statistics and missing observations).
%   xparam1:        initial value of estimated parameters as returned by
%                   set_prior() or loaded from mode-file
%   hh:             hessian matrix at the loaded mode (or empty matrix)
%   M_:             structure storing the model information
%   options_:       structure storing the options
%   oo_:            structure storing the results
%   estim_params_:  structure storing information about estimated
%                   parameters
%   bayestopt_:     structure storing information about priors
%   bounds:         structure containing prior bounds
%
% SPECIAL REQUIREMENTS
%   none

% Copyright © 2003-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

hh = [];
xparam1 = [];

if isempty(gsa_flag)
    gsa_flag = false;
else
    % Decide if a DSGE or DSGE-VAR has to be estimated.
    if ~isempty(strmatch('dsge_prior_weight', M_.param_names))
        options_.dsge_var = 1;
    end
    if isempty(var_list_)
        var_list_ = check_list_of_variables(options_, M_, var_list_);
        options_.varlist = var_list_;
    end
    if gsa_flag
        % Get the list of the endogenous variables for which posterior statistics wil be computed.
        options_.varlist = var_list_;
    else
        % This was done in dynare_estimation_1
    end
end

if options_.dsge_var && options_.presample~=0
    error('DSGE-VAR does not support the presample option.')
end

% Test if observed variables are declared.
if ~isfield(options_,'varobs')
    error('VAROBS statement is missing!')
end

% Checks on VAROBS
check_varobs_are_endo_and_declared_once(options_.varobs,M_.endo_names);
% Set the number of observed variables.
options_.number_of_observed_variables = length(options_.varobs);

if options_.discretionary_policy
    if options_.order>1
        error('discretionary_policy does not support order>1');
    else
        M_=discretionary_policy_initialization(M_,options_);
    end
end

% Check the perturbation order for pruning (k order perturbation based nonlinear filters are not yet implemented for k>3).
if options_.order>3 && options_.particle.pruning
    error('Higher order nonlinear filters are not compatible with pruning option.')
end

% analytical derivation is not yet available for kalman_filter_fast
if options_.analytic_derivation && options_.fast_kalman_filter
    error(['estimation option conflict: analytic_derivation isn''t available ' ...
           'for fast_kalman_filter'])
end

% fast kalman filter is only available with kalman_algo == 0,1,3
if options_.fast_kalman_filter && ~ismember(options_.kalman_algo, [0,1,3])
    error(['estimation option conflict: fast_kalman_filter is only available ' ...
               'with kalman_algo = 0, 1 or 3'])
end

% Set options_.lik_init equal to 3 if diffuse filter is used or kalman_algo refers to a diffuse filter algorithm.
if isequal(options_.diffuse_filter,1) || (options_.kalman_algo>2)
    if isequal(options_.lik_init,2)
        error('options diffuse_filter, lik_init and/or kalman_algo have contradictory settings')
    else
        options_.lik_init = 3;
    end
end

options_=select_qz_criterium_value(options_);

% Set options related to filtered variables.
if  isequal(options_.filtered_vars,0) && ~isempty(options_.filter_step_ahead)
    options_.filtered_vars = 1;
end
if ~isequal(options_.filtered_vars,0) && isempty(options_.filter_step_ahead)
    options_.filter_step_ahead = 1;
end
if ~isequal(options_.filtered_vars,0) && isequal(options_.filter_step_ahead,0)
    options_.filter_step_ahead = 1;
end
if ~isequal(options_.filter_step_ahead,0)
    options_.nk = max(options_.filter_step_ahead);
end

% Set the name of the directory where (intermediary) results will be saved.
if isempty(dname)
    M_.dname = M_.fname;
else
    M_.dname = dname;
end

% Set priors over the estimated parameters.
if ~isempty(estim_params_) && ~(isfield(estim_params_,'nvx') && (size(estim_params_.var_exo,1)+size(estim_params_.var_endo,1)+size(estim_params_.corrx,1)+size(estim_params_.corrn,1)+size(estim_params_.param_vals,1))==0)
    [xparam1,estim_params_,bayestopt_,lb,ub,M_] = set_prior(estim_params_,M_,options_);
end

if ~isempty(bayestopt_) && any(bayestopt_.pshape==0) && any(bayestopt_.pshape~=0)
    error('Estimation must be either fully ML or fully Bayesian. Maybe you forgot to specify a prior distribution.')
end
% Check if a _prior_restrictions.m file exists
if exist([M_.fname '_prior_restrictions.m'])
    options_.prior_restrictions.status = 1;
    options_.prior_restrictions.routine = str2func([M_.fname '_prior_restrictions']);
end

% Check that the provided mode_file is compatible with the current estimation settings.
if ~isempty(estim_params_) && ~(isfield(estim_params_,'nvx') && sum(estim_params_.nvx+estim_params_.nvn+estim_params_.ncx+estim_params_.ncn+estim_params_.np)==0) && ~isempty(options_.mode_file) && ~options_.mh_posterior_mode_estimation
    [xparam1, hh] = check_mode_file(xparam1, hh, options_, bayestopt_);
end

%check for calibrated covariances before updating parameters
if ~isempty(estim_params_) && ~(isfield(estim_params_,'nvx') && sum(estim_params_.nvx+estim_params_.nvn+estim_params_.ncx+estim_params_.ncn+estim_params_.np)==0)
    estim_params_=check_for_calibrated_covariances(estim_params_,M_);
end

%%read out calibration that was set in mod-file and can be used for initialization
xparam1_calib=get_all_parameters(estim_params_,M_); %get calibrated parameters
if ~any(isnan(xparam1_calib)) %all estimated parameters are calibrated
    estim_params_.full_calibration_detected=1;
else
    estim_params_.full_calibration_detected=0;
end
if options_.use_calibration_initialization %set calibration as starting values
    if ~isempty(bayestopt_) && all(bayestopt_.pshape==0) && any(all(isnan([xparam1_calib xparam1]),2))
        error('Estimation: When using the use_calibration option with ML, the parameters must be properly initialized.')
    else
        [xparam1,estim_params_]=do_parameter_initialization(estim_params_,xparam1_calib,xparam1); %get explicitly initialized parameters that have precedence to calibrated values
    end
end

if ~isempty(bayestopt_) && all(bayestopt_.pshape==0) && any(isnan(xparam1))
    error('ML estimation requires all estimated parameters to be initialized, either in an estimated_params or estimated_params_init-block ')
end

if ~isempty(estim_params_) && ~(all(strcmp(fieldnames(estim_params_),'full_calibration_detected'))  || (isfield(estim_params_,'nvx') && sum(estim_params_.nvx+estim_params_.nvn+estim_params_.ncx+estim_params_.ncn+estim_params_.np)==0))
    if ~isempty(bayestopt_) && any(bayestopt_.pshape > 0)
        % Plot prior densities.
        if ~options_.nograph && options_.plot_priors
            plot_priors(bayestopt_,M_,estim_params_,options_)
        end
        % Set prior bounds
        bounds = prior_bounds(bayestopt_, options_.prior_trunc);
        bounds.lb = max(bounds.lb,lb);
        bounds.ub = min(bounds.ub,ub);
    else  % estimated parameters but no declared priors
          % No priors are declared so Dynare will estimate the model by
          % maximum likelihood with inequality constraints for the parameters.
        options_.mh_replic = 0;% No metropolis.
        bounds.lb = lb;
        bounds.ub = ub;
    end
    % Test if initial values of the estimated parameters are all between the prior lower and upper bounds.
    if options_.use_calibration_initialization
        try
            check_prior_bounds(xparam1,bounds,M_,estim_params_,options_,bayestopt_)
        catch
            e = lasterror();
            fprintf('Cannot use parameter values from calibration as they violate the prior bounds.')
            rethrow(e);
        end
    else
        check_prior_bounds(xparam1,bounds,M_,estim_params_,options_,bayestopt_)
    end
end

if isempty(estim_params_) || all(strcmp(fieldnames(estim_params_),'full_calibration_detected')) || (isfield(estim_params_,'nvx') && sum(estim_params_.nvx+estim_params_.nvn+estim_params_.ncx+estim_params_.ncn+estim_params_.np)==0) % If estim_params_ is empty (e.g. when running the smoother on a calibrated model)
    if ~options_.smoother
        error('Estimation: the ''estimated_params'' block is mandatory (unless you are running a smoother)')
    end
    xparam1 = [];
    bayestopt_.jscale = [];
    bayestopt_.pshape = [];
    bayestopt_.name =[];
    bayestopt_.p1 = [];
    bayestopt_.p2 = [];
    bayestopt_.p3 = [];
    bayestopt_.p4 = [];
    bayestopt_.p5 = [];
    bayestopt_.p6 = [];
    bayestopt_.p7 = [];
    estim_params_.var_exo=[];
    estim_params_.var_endo=[];
    estim_params_.corrx=[];
    estim_params_.corrn=[];
    estim_params_.param_vals=[];
    estim_params_.nvx = 0;
    estim_params_.nvn = 0;
    estim_params_.ncx = 0;
    estim_params_.ncn = 0;
    estim_params_.np = 0;
    bounds.lb = [];
    bounds.ub = [];
end

% storing prior parameters in results
oo_.prior.mean = bayestopt_.p1;
oo_.prior.mode = bayestopt_.p5;
oo_.prior.variance = diag(bayestopt_.p2.^2);
oo_.prior.hyperparameters.first = bayestopt_.p6;
oo_.prior.hyperparameters.second = bayestopt_.p7;

% Is there a linear trend in the measurement equation?
if ~isfield(options_,'trend_coeffs') % No!
    bayestopt_.with_trend = 0;
else% Yes!
    bayestopt_.with_trend = 1;
    bayestopt_.trend_coeff = {};
    for i=1:options_.number_of_observed_variables
        if i > length(options_.trend_coeffs)
            bayestopt_.trend_coeff{i} = '0';
        else
            bayestopt_.trend_coeff{i} = options_.trend_coeffs{i};
        end
    end
end

% Get informations about the variables of the model.
dr = set_state_space(oo_.dr,M_);
oo_.dr = dr;
nstatic = M_.nstatic;          % Number of static variables.
npred = M_.nspred;             % Number of predetermined variables.
nspred = M_.nspred;            % Number of predetermined variables in the state equation.

%% Setting restricted state space (observed + predetermined variables)
% oo_.dr.restrict_var_list: location of union of observed and state variables in decision rules (decision rule order)
% bayestopt_.mfys: position of observables in oo_.dr.ys (declaration order)
% bayestopt_.mf0: position of state variables in restricted state vector (oo_.dr.restrict_var_list)
% bayestopt_.mf1: positions of observed variables in restricted state vector (oo_.dr.restrict_var_list order)
% bayestopt_.mf2: positions of observed variables in decision rules/expanded state vector (decision rule order)
% bayestopt_.smoother_var_list: positions of observed variables and requested smoothed variables in decision rules (decision rule order)
% bayestopt_.smoother_saved_var_list: positions of requested smoothed variables in bayestopt_.smoother_var_list
% bayestopt_.smoother_restrict_columns: positions of states in observed variables and requested smoothed variables in decision rules (decision rule order)
% bayestopt_.smoother_mf: positions of observed variables and requested smoothed variables in bayestopt_.smoother_var_list
var_obs_index_dr = [];
k1 = [];
for i=1:options_.number_of_observed_variables
    var_obs_index_dr = [var_obs_index_dr; strmatch(options_.varobs{i}, M_.endo_names(dr.order_var), 'exact')];
    k1 = [k1; strmatch(options_.varobs{i}, M_.endo_names, 'exact')];
end

k3 = [];
k3p = [];
if options_.selected_variables_only
    if options_.forecast > 0 && options_.mh_replic == 0 && ~options_.load_mh_file
        fprintf('\nEstimation: The selected_variables_only option is incompatible with classical forecasts. It will be ignored.\n')
        k3 = (1:M_.endo_nbr)';
        k3p = (1:M_.endo_nbr)';
    else
        for i=1:length(var_list_)
            k3 = [k3; strmatch(var_list_{i}, M_.endo_names(dr.order_var), 'exact')];
            k3p = [k3; strmatch(var_list_{i}, M_.endo_names, 'exact')];
        end
    end
else
    k3 = (1:M_.endo_nbr)';
    k3p = (1:M_.endo_nbr)';
end

% Define union of observed and state variables
k2 = union(var_obs_index_dr,[M_.nstatic+1:M_.nstatic+M_.nspred]', 'rows');
% Set restrict_state to postion of observed + state variables in expanded state vector.
oo_.dr.restrict_var_list = k2;
% set mf0 to positions of state variables in restricted state vector for likelihood computation.
[~,bayestopt_.mf0] = ismember([M_.nstatic+1:M_.nstatic+M_.nspred]',k2);
% Set mf1 to positions of observed variables in restricted state vector for likelihood computation.
[~,bayestopt_.mf1] = ismember(var_obs_index_dr,k2);
% Set mf2 to positions of observed variables in expanded state vector for filtering and smoothing.
bayestopt_.mf2  = var_obs_index_dr;
bayestopt_.mfys = k1;
[~,ic] = intersect(k2,nstatic+(1:npred)');
oo_.dr.restrict_columns = [ic; length(k2)+(1:nspred-npred)'];
bayestopt_.smoother_var_list = union(k2,k3);
[~,~,bayestopt_.smoother_saved_var_list] = intersect(k3,bayestopt_.smoother_var_list(:));
[~,ic] = intersect(bayestopt_.smoother_var_list,nstatic+(1:npred)');
bayestopt_.smoother_restrict_columns = ic;
[~,bayestopt_.smoother_mf] = ismember(var_obs_index_dr, bayestopt_.smoother_var_list);

if options_.analytic_derivation
    if options_.lik_init == 3
        error('analytic derivation is incompatible with diffuse filter')
    end
    options_.analytic_derivation = 1;
    if estim_params_.np || isfield(options_,'identification_check_endogenous_params_with_no_prior')
        % check if steady state changes param values
        M_local=M_;
        if isfield(options_,'identification_check_endogenous_params_with_no_prior')
            M_local.params = M_local.params*1.01; %vary parameters
        else
            M_local.params(estim_params_.param_vals(:,1)) = xparam1(estim_params_.nvx+estim_params_.ncx+estim_params_.nvn+estim_params_.ncn+1:end); %set parameters
            M_local.params(estim_params_.param_vals(:,1)) = M_local.params(estim_params_.param_vals(:,1))*1.01; %vary parameters
        end
        if options_.diffuse_filter || options_.steadystate.nocheck
            steadystate_check_flag = 0;
        else
            steadystate_check_flag = 1;
        end
        [~, params] = evaluate_steady_state(oo_.steady_state,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_local,options_,steadystate_check_flag);
        change_flag=any(find(params-M_local.params));
        if change_flag
            skipline()
            if any(isnan(params))
                disp('After computing the steadystate, the following parameters are still NaN: '),
                disp(char(M_local.param_names(isnan(params))))
            end
            if any(find(params(~isnan(params))-M_local.params(~isnan(params))))
                disp('The steadystate file changed the values for the following parameters: '),
                disp(char(M_local.param_names(find(params(~isnan(params))-M_local.params(~isnan(params))))))
            end
            disp('The derivatives of jacobian and steady-state will be computed numerically'),
            disp('(re-set options_.analytic_derivation_mode= -2)'),
            options_.analytic_derivation_mode= -2;
        end
    end
end

% If jscale isn't specified for an estimated parameter, use global option options_.jscale, set to optimal value for a normal distribution by default.
% Note that check_posterior_sampler_options and mode_compute=6 may overwrite the setting
if isempty(options_.mh_jscale)
    options_.mh_jscale=2.38/sqrt(length(xparam1));
end
k = find(isnan(bayestopt_.jscale));
bayestopt_.jscale(k) = options_.mh_jscale;

% Build the dataset
if ~isempty(options_.datafile)
    [~,name] = fileparts(options_.datafile);
    if strcmp(name,M_.fname)
        error('Data-file and mod-file are not allowed to have the same name. Please change the name of the data file.')
    end
end

if isnan(options_.first_obs)
    options_.first_obs=1;
end
[dataset_, dataset_info] = makedataset(options_, options_.dsge_var*options_.dsge_varlag, gsa_flag);

%set options for old interface from the ones for new interface
if ~isempty(dataset_)
    options_.nobs = dataset_.nobs;
    if options_.endogenous_prior
        if ~isnan(dataset_info.missing.number_of_observations) && ~(dataset_info.missing.number_of_observations==0) %missing observations present
            if dataset_info.missing.no_more_missing_observations<dataset_.nobs-10
                fprintf('\ndynare_estimation_init: There are missing observations in the data.\n')
                fprintf('dynare_estimation_init: I am computing the moments for the endogenous prior only\n')
                fprintf('dynare_estimation_init: on the observations after the last missing one, i.e. %u.\n',dataset_info.missing.no_more_missing_observations)
            else
                fprintf('\ndynare_estimation_init: There are too many missing observations in the data.\n')
                fprintf('dynare_estimation_init: The endogenous_prior-option needs a consistent sample of \n')
                fprintf('dynare_estimation_init: at least 10 full observations at the end.\n')
                error('The endogenous_prior-option does not support your missing data.')
            end
        end
    end
end

% setting steadystate_check_flag option
if options_.diffuse_filter || options_.steadystate.nocheck
    steadystate_check_flag = 0;
else
    steadystate_check_flag = 1;
end

%check steady state at initial parameters
M_local = M_;
nvx = estim_params_.nvx;
ncx = estim_params_.ncx;
nvn = estim_params_.nvn;
ncn = estim_params_.ncn;
if estim_params_.np
    M_local.params(estim_params_.param_vals(:,1)) = xparam1(nvx+ncx+nvn+ncn+1:end);
end
[oo_.steady_state, params,info] = evaluate_steady_state(oo_.steady_state,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_local,options_,steadystate_check_flag);

if info(1)
    fprintf('\ndynare_estimation_init:: The steady state at the initial parameters cannot be computed.\n')
    if options_.debug
        M_local.params=params;
        plist = list_of_parameters_calibrated_as_NaN(M_local);
        if ~isempty(plist)
            message = 'dynare_estimation_init:: Some of the parameters are NaN (' ;
            for i=1:length(plist)
                if i<length(plist)
                    message = [message, plist{i} ', '];
                else
                    message = [message, plist{i} ')'];
                end
            end
        end
        fprintf('%s\n',message)
        plist = list_of_parameters_calibrated_as_Inf(M_local);
        if ~isempty(plist)
            message = 'dynare_estimation_init:: Some of the parameters are Inf (' ;
            for i=1:length(plist)
                if i<size(plist)
                    message = [message, plist{i} ', '];
                else
                    message = [message, plist{i} ')'];
                end
            end
        end
        fprintf('%s\n',message)
    end
    print_info(info, 0, options_);
end

% If the steady state of the observed variables is non zero, set noconstant equal 0 ()
if (~options_.loglinear && all(abs(oo_.steady_state(bayestopt_.mfys))<1e-9)) || (options_.loglinear && all(abs(log(oo_.steady_state(bayestopt_.mfys)))<1e-9))
    options_.noconstant = 0; %identifying the constant based on just the initial parameter value is not feasible
else
    options_.noconstant = 0;
    % If the data are prefiltered then there must not be constants in the
    % measurement equation of the DSGE model or in the DSGE-VAR model.
    if options_.prefilter
        skipline()
        disp('You have specified the option "prefilter" to demean your data but the')
        disp('steady state of of the observed variables is non zero.')
        disp('Either change the measurement equations, by centering the observed')
        disp('variables in the model block, or drop the prefiltering.')
        error('The option "prefilter" is inconsistent with the non-zero mean measurement equations in the model.')
    end
end

%% get the non-zero rows and columns of Sigma_e and H

estim_params_= get_matrix_entries_for_psd_check(M_,estim_params_);

if options_.load_results_after_load_mh
    if ~exist([M_.dname filesep 'Output' filesep M_.fname '_results.mat'],'file')
        fprintf('\ndynare_estimation_init:: You specified the load_results_after_load_mh, but no _results.mat-file\n')
        fprintf('dynare_estimation_init:: was found. Results will be recomputed.\n')
        options_.load_results_after_load_mh=0;
    end
end

if options_.mh_replic || options_.load_mh_file
    [current_options, options_, bayestopt_] = check_posterior_sampler_options([], M_.fname, M_.dname, options_, bounds, bayestopt_);
    options_.posterior_sampler_options.current_options = current_options;
end

%% set heteroskedastic shocks
if options_.heteroskedastic_filter
    if options_.fast_kalman_filter
        error('estimation option conflict: "heteroskedastic_filter" incompatible with "fast_kalman_filter"')
    end
    if options_.analytic_derivation
        error(['estimation option conflict: analytic_derivation isn''t available ' ...
            'for heteroskedastic_filter'])
    end

    M_.heteroskedastic_shocks.Qvalue = NaN(M_.exo_nbr,options_.nobs+1);
    M_.heteroskedastic_shocks.Qscale = NaN(M_.exo_nbr,options_.nobs+1);

    for k=1:length(M_.heteroskedastic_shocks.Qvalue_orig)
        v = M_.heteroskedastic_shocks.Qvalue_orig(k);
        temp_periods=v.periods(v.periods<options_.nobs+options_.first_obs+1);
        temp_periods=temp_periods(temp_periods>=options_.first_obs);
        M_.heteroskedastic_shocks.Qvalue(v.exo_id, temp_periods-(options_.first_obs-1)) = v.value^2;
    end
    for k=1:length(M_.heteroskedastic_shocks.Qscale_orig)
        v = M_.heteroskedastic_shocks.Qscale_orig(k);
        temp_periods=v.periods(v.periods<options_.nobs+options_.first_obs+1);
        temp_periods=temp_periods(temp_periods>=options_.first_obs);
        M_.heteroskedastic_shocks.Qscale(v.exo_id, temp_periods-(options_.first_obs-1)) = v.scale^2;
    end

    if any(any(~isnan(M_.heteroskedastic_shocks.Qvalue) & ~isnan(M_.heteroskedastic_shocks.Qscale)))
        fprintf('\ndynare_estimation_init: With the option "heteroskedastic_shocks" you cannot define\n')
        fprintf('dynare_estimation_init: the scale and the value for the same shock \n')
        fprintf('dynare_estimation_init: in the same period!\n')
        error('Scale and value defined for the same shock in the same period with "heteroskedastic_shocks".')
    end
end

if (options_.occbin.likelihood.status && options_.occbin.likelihood.inversion_filter) || (options_.occbin.smoother.status && options_.occbin.smoother.inversion_filter)
    if isempty(options_.occbin.likelihood.IVF_shock_observable_mapping)
        options_.occbin.likelihood.IVF_shock_observable_mapping=find(diag(M_local.Sigma_e)~=0);
    else
        zero_var_shocks=find(diag(M_local.Sigma_e)==0);
        if any(ismember(options_.occbin.likelihood.IVF_shock_observable_mapping,zero_var_shocks))
            error('IVF-filter: an observable is mapped to a zero variance shock.')
        end
    end
end

if options_.occbin.smoother.status && options_.occbin.smoother.inversion_filter
    if ~isempty(options_.nk)
        fprintf('dynare_estimation_init: the inversion filter does not support filter_step_ahead. Disabling the option.\n')
        options_.nk=[];
    end
    if options_.filter_covariance
        fprintf('dynare_estimation_init: the inversion filter does not support filter_covariance. Disabling the option.\n')
        options_.filter_covariance=false;
    end
    if options_.smoothed_state_uncertainty
        fprintf('dynare_estimation_init: the inversion filter does not support smoothed_state_uncertainty. Disabling the option.\n')
        options_.smoothed_state_uncertainty=false;
    end
end

if options_.occbin.smoother.status || options_.occbin.likelihood.status
    if isfield(M_,'surprise_shocks') && ~isempty(M_.surprise_shocks)
        fprintf('dynare_estimation_init: OccBin smoother/filter: previous shocks(surprise) block detected. Deleting its content.\n')
        options_.occbin.simul.SHOCKS=zeros(1,M_.exo_nbr);
        options_.occbin.simul.exo_pos=1:M_.exo_nbr;
        M_.surprise_shocks=[];
    end
end