1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
|
function [dataset_, dataset_info, xparam1, hh, M_, options_, oo_, estim_params_,bayestopt_, bounds] = dynare_estimation_init(var_list_, dname, gsa_flag, M_, options_, oo_, estim_params_, bayestopt_)
% Performs initialization tasks before estimation or global sensitivity analysis
%
% INPUTS
% var_list_: selected endogenous variables vector
% dname: alternative directory name
% gsa_flag: flag for GSA operation (optional)
% M_: structure storing the model information
% options_: structure storing the options
% oo_: structure storing the results
% estim_params_: structure storing information about estimated
% parameters
% bayestopt_: structure storing information about priors
% OUTPUTS
% dataset_: the dataset after required transformation
% dataset_info: Various informations about the dataset (descriptive statistics and missing observations).
% xparam1: initial value of estimated parameters as returned by
% set_prior() or loaded from mode-file
% hh: hessian matrix at the loaded mode (or empty matrix)
% M_: structure storing the model information
% options_: structure storing the options
% oo_: structure storing the results
% estim_params_: structure storing information about estimated
% parameters
% bayestopt_: structure storing information about priors
% bounds: structure containing prior bounds
%
% SPECIAL REQUIREMENTS
% none
% Copyright © 2003-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
hh = [];
xparam1 = [];
if isempty(gsa_flag)
gsa_flag = false;
else
% Decide if a DSGE or DSGE-VAR has to be estimated.
if ~isempty(strmatch('dsge_prior_weight', M_.param_names))
options_.dsge_var = 1;
end
if isempty(var_list_)
var_list_ = check_list_of_variables(options_, M_, var_list_);
options_.varlist = var_list_;
end
if gsa_flag
% Get the list of the endogenous variables for which posterior statistics wil be computed.
options_.varlist = var_list_;
else
% This was done in dynare_estimation_1
end
end
if options_.dsge_var && options_.presample~=0
error('DSGE-VAR does not support the presample option.')
end
% Test if observed variables are declared.
if ~isfield(options_,'varobs')
error('VAROBS statement is missing!')
end
% Checks on VAROBS
check_varobs_are_endo_and_declared_once(options_.varobs,M_.endo_names);
% Set the number of observed variables.
options_.number_of_observed_variables = length(options_.varobs);
if options_.discretionary_policy
if options_.order>1
error('discretionary_policy does not support order>1');
else
M_=discretionary_policy_initialization(M_,options_);
end
end
% Check the perturbation order for pruning (k order perturbation based nonlinear filters are not yet implemented for k>3).
if options_.order>3 && options_.particle.pruning
error('Higher order nonlinear filters are not compatible with pruning option.')
end
% analytical derivation is not yet available for kalman_filter_fast
if options_.analytic_derivation && options_.fast_kalman_filter
error(['estimation option conflict: analytic_derivation isn''t available ' ...
'for fast_kalman_filter'])
end
% fast kalman filter is only available with kalman_algo == 0,1,3
if options_.fast_kalman_filter && ~ismember(options_.kalman_algo, [0,1,3])
error(['estimation option conflict: fast_kalman_filter is only available ' ...
'with kalman_algo = 0, 1 or 3'])
end
% Set options_.lik_init equal to 3 if diffuse filter is used or kalman_algo refers to a diffuse filter algorithm.
if isequal(options_.diffuse_filter,1) || (options_.kalman_algo>2)
if isequal(options_.lik_init,2)
error('options diffuse_filter, lik_init and/or kalman_algo have contradictory settings')
else
options_.lik_init = 3;
end
end
options_=select_qz_criterium_value(options_);
% Set options related to filtered variables.
if isequal(options_.filtered_vars,0) && ~isempty(options_.filter_step_ahead)
options_.filtered_vars = 1;
end
if ~isequal(options_.filtered_vars,0) && isempty(options_.filter_step_ahead)
options_.filter_step_ahead = 1;
end
if ~isequal(options_.filtered_vars,0) && isequal(options_.filter_step_ahead,0)
options_.filter_step_ahead = 1;
end
if ~isequal(options_.filter_step_ahead,0)
options_.nk = max(options_.filter_step_ahead);
end
% Set the name of the directory where (intermediary) results will be saved.
if isempty(dname)
M_.dname = M_.fname;
else
M_.dname = dname;
end
% Set priors over the estimated parameters.
if ~isempty(estim_params_) && ~(isfield(estim_params_,'nvx') && (size(estim_params_.var_exo,1)+size(estim_params_.var_endo,1)+size(estim_params_.corrx,1)+size(estim_params_.corrn,1)+size(estim_params_.param_vals,1))==0)
[xparam1,estim_params_,bayestopt_,lb,ub,M_] = set_prior(estim_params_,M_,options_);
end
if ~isempty(bayestopt_) && any(bayestopt_.pshape==0) && any(bayestopt_.pshape~=0)
error('Estimation must be either fully ML or fully Bayesian. Maybe you forgot to specify a prior distribution.')
end
% Check if a _prior_restrictions.m file exists
if exist([M_.fname '_prior_restrictions.m'])
options_.prior_restrictions.status = 1;
options_.prior_restrictions.routine = str2func([M_.fname '_prior_restrictions']);
end
% Check that the provided mode_file is compatible with the current estimation settings.
if ~isempty(estim_params_) && ~(isfield(estim_params_,'nvx') && sum(estim_params_.nvx+estim_params_.nvn+estim_params_.ncx+estim_params_.ncn+estim_params_.np)==0) && ~isempty(options_.mode_file) && ~options_.mh_posterior_mode_estimation
[xparam1, hh] = check_mode_file(xparam1, hh, options_, bayestopt_);
end
%check for calibrated covariances before updating parameters
if ~isempty(estim_params_) && ~(isfield(estim_params_,'nvx') && sum(estim_params_.nvx+estim_params_.nvn+estim_params_.ncx+estim_params_.ncn+estim_params_.np)==0)
estim_params_=check_for_calibrated_covariances(estim_params_,M_);
end
%%read out calibration that was set in mod-file and can be used for initialization
xparam1_calib=get_all_parameters(estim_params_,M_); %get calibrated parameters
if ~any(isnan(xparam1_calib)) %all estimated parameters are calibrated
estim_params_.full_calibration_detected=1;
else
estim_params_.full_calibration_detected=0;
end
if options_.use_calibration_initialization %set calibration as starting values
if ~isempty(bayestopt_) && all(bayestopt_.pshape==0) && any(all(isnan([xparam1_calib xparam1]),2))
error('Estimation: When using the use_calibration option with ML, the parameters must be properly initialized.')
else
[xparam1,estim_params_]=do_parameter_initialization(estim_params_,xparam1_calib,xparam1); %get explicitly initialized parameters that have precedence to calibrated values
end
end
if ~isempty(bayestopt_) && all(bayestopt_.pshape==0) && any(isnan(xparam1))
error('ML estimation requires all estimated parameters to be initialized, either in an estimated_params or estimated_params_init-block ')
end
if ~isempty(estim_params_) && ~(all(strcmp(fieldnames(estim_params_),'full_calibration_detected')) || (isfield(estim_params_,'nvx') && sum(estim_params_.nvx+estim_params_.nvn+estim_params_.ncx+estim_params_.ncn+estim_params_.np)==0))
if ~isempty(bayestopt_) && any(bayestopt_.pshape > 0)
% Plot prior densities.
if ~options_.nograph && options_.plot_priors
plot_priors(bayestopt_,M_,estim_params_,options_)
end
% Set prior bounds
bounds = prior_bounds(bayestopt_, options_.prior_trunc);
bounds.lb = max(bounds.lb,lb);
bounds.ub = min(bounds.ub,ub);
else % estimated parameters but no declared priors
% No priors are declared so Dynare will estimate the model by
% maximum likelihood with inequality constraints for the parameters.
options_.mh_replic = 0;% No metropolis.
bounds.lb = lb;
bounds.ub = ub;
end
% Test if initial values of the estimated parameters are all between the prior lower and upper bounds.
if options_.use_calibration_initialization
try
check_prior_bounds(xparam1,bounds,M_,estim_params_,options_,bayestopt_)
catch
e = lasterror();
fprintf('Cannot use parameter values from calibration as they violate the prior bounds.')
rethrow(e);
end
else
check_prior_bounds(xparam1,bounds,M_,estim_params_,options_,bayestopt_)
end
end
if isempty(estim_params_) || all(strcmp(fieldnames(estim_params_),'full_calibration_detected')) || (isfield(estim_params_,'nvx') && sum(estim_params_.nvx+estim_params_.nvn+estim_params_.ncx+estim_params_.ncn+estim_params_.np)==0) % If estim_params_ is empty (e.g. when running the smoother on a calibrated model)
if ~options_.smoother
error('Estimation: the ''estimated_params'' block is mandatory (unless you are running a smoother)')
end
xparam1 = [];
bayestopt_.jscale = [];
bayestopt_.pshape = [];
bayestopt_.name =[];
bayestopt_.p1 = [];
bayestopt_.p2 = [];
bayestopt_.p3 = [];
bayestopt_.p4 = [];
bayestopt_.p5 = [];
bayestopt_.p6 = [];
bayestopt_.p7 = [];
estim_params_.var_exo=[];
estim_params_.var_endo=[];
estim_params_.corrx=[];
estim_params_.corrn=[];
estim_params_.param_vals=[];
estim_params_.nvx = 0;
estim_params_.nvn = 0;
estim_params_.ncx = 0;
estim_params_.ncn = 0;
estim_params_.np = 0;
bounds.lb = [];
bounds.ub = [];
end
% storing prior parameters in results
oo_.prior.mean = bayestopt_.p1;
oo_.prior.mode = bayestopt_.p5;
oo_.prior.variance = diag(bayestopt_.p2.^2);
oo_.prior.hyperparameters.first = bayestopt_.p6;
oo_.prior.hyperparameters.second = bayestopt_.p7;
% Is there a linear trend in the measurement equation?
if ~isfield(options_,'trend_coeffs') % No!
bayestopt_.with_trend = 0;
else% Yes!
bayestopt_.with_trend = 1;
bayestopt_.trend_coeff = {};
for i=1:options_.number_of_observed_variables
if i > length(options_.trend_coeffs)
bayestopt_.trend_coeff{i} = '0';
else
bayestopt_.trend_coeff{i} = options_.trend_coeffs{i};
end
end
end
% Get informations about the variables of the model.
dr = set_state_space(oo_.dr,M_);
oo_.dr = dr;
nstatic = M_.nstatic; % Number of static variables.
npred = M_.nspred; % Number of predetermined variables.
nspred = M_.nspred; % Number of predetermined variables in the state equation.
%% Setting restricted state space (observed + predetermined variables)
% oo_.dr.restrict_var_list: location of union of observed and state variables in decision rules (decision rule order)
% bayestopt_.mfys: position of observables in oo_.dr.ys (declaration order)
% bayestopt_.mf0: position of state variables in restricted state vector (oo_.dr.restrict_var_list)
% bayestopt_.mf1: positions of observed variables in restricted state vector (oo_.dr.restrict_var_list order)
% bayestopt_.mf2: positions of observed variables in decision rules/expanded state vector (decision rule order)
% bayestopt_.smoother_var_list: positions of observed variables and requested smoothed variables in decision rules (decision rule order)
% bayestopt_.smoother_saved_var_list: positions of requested smoothed variables in bayestopt_.smoother_var_list
% bayestopt_.smoother_restrict_columns: positions of states in observed variables and requested smoothed variables in decision rules (decision rule order)
% bayestopt_.smoother_mf: positions of observed variables and requested smoothed variables in bayestopt_.smoother_var_list
var_obs_index_dr = [];
k1 = [];
for i=1:options_.number_of_observed_variables
var_obs_index_dr = [var_obs_index_dr; strmatch(options_.varobs{i}, M_.endo_names(dr.order_var), 'exact')];
k1 = [k1; strmatch(options_.varobs{i}, M_.endo_names, 'exact')];
end
k3 = [];
k3p = [];
if options_.selected_variables_only
if options_.forecast > 0 && options_.mh_replic == 0 && ~options_.load_mh_file
fprintf('\nEstimation: The selected_variables_only option is incompatible with classical forecasts. It will be ignored.\n')
k3 = (1:M_.endo_nbr)';
k3p = (1:M_.endo_nbr)';
else
for i=1:length(var_list_)
k3 = [k3; strmatch(var_list_{i}, M_.endo_names(dr.order_var), 'exact')];
k3p = [k3; strmatch(var_list_{i}, M_.endo_names, 'exact')];
end
end
else
k3 = (1:M_.endo_nbr)';
k3p = (1:M_.endo_nbr)';
end
% Define union of observed and state variables
k2 = union(var_obs_index_dr,[M_.nstatic+1:M_.nstatic+M_.nspred]', 'rows');
% Set restrict_state to postion of observed + state variables in expanded state vector.
oo_.dr.restrict_var_list = k2;
% set mf0 to positions of state variables in restricted state vector for likelihood computation.
[~,bayestopt_.mf0] = ismember([M_.nstatic+1:M_.nstatic+M_.nspred]',k2);
% Set mf1 to positions of observed variables in restricted state vector for likelihood computation.
[~,bayestopt_.mf1] = ismember(var_obs_index_dr,k2);
% Set mf2 to positions of observed variables in expanded state vector for filtering and smoothing.
bayestopt_.mf2 = var_obs_index_dr;
bayestopt_.mfys = k1;
[~,ic] = intersect(k2,nstatic+(1:npred)');
oo_.dr.restrict_columns = [ic; length(k2)+(1:nspred-npred)'];
bayestopt_.smoother_var_list = union(k2,k3);
[~,~,bayestopt_.smoother_saved_var_list] = intersect(k3,bayestopt_.smoother_var_list(:));
[~,ic] = intersect(bayestopt_.smoother_var_list,nstatic+(1:npred)');
bayestopt_.smoother_restrict_columns = ic;
[~,bayestopt_.smoother_mf] = ismember(var_obs_index_dr, bayestopt_.smoother_var_list);
if options_.analytic_derivation
if options_.lik_init == 3
error('analytic derivation is incompatible with diffuse filter')
end
options_.analytic_derivation = 1;
if estim_params_.np || isfield(options_,'identification_check_endogenous_params_with_no_prior')
% check if steady state changes param values
M_local=M_;
if isfield(options_,'identification_check_endogenous_params_with_no_prior')
M_local.params = M_local.params*1.01; %vary parameters
else
M_local.params(estim_params_.param_vals(:,1)) = xparam1(estim_params_.nvx+estim_params_.ncx+estim_params_.nvn+estim_params_.ncn+1:end); %set parameters
M_local.params(estim_params_.param_vals(:,1)) = M_local.params(estim_params_.param_vals(:,1))*1.01; %vary parameters
end
if options_.diffuse_filter || options_.steadystate.nocheck
steadystate_check_flag = 0;
else
steadystate_check_flag = 1;
end
[~, params] = evaluate_steady_state(oo_.steady_state,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_local,options_,steadystate_check_flag);
change_flag=any(find(params-M_local.params));
if change_flag
skipline()
if any(isnan(params))
disp('After computing the steadystate, the following parameters are still NaN: '),
disp(char(M_local.param_names(isnan(params))))
end
if any(find(params(~isnan(params))-M_local.params(~isnan(params))))
disp('The steadystate file changed the values for the following parameters: '),
disp(char(M_local.param_names(find(params(~isnan(params))-M_local.params(~isnan(params))))))
end
disp('The derivatives of jacobian and steady-state will be computed numerically'),
disp('(re-set options_.analytic_derivation_mode= -2)'),
options_.analytic_derivation_mode= -2;
end
end
end
% If jscale isn't specified for an estimated parameter, use global option options_.jscale, set to optimal value for a normal distribution by default.
% Note that check_posterior_sampler_options and mode_compute=6 may overwrite the setting
if isempty(options_.mh_jscale)
options_.mh_jscale=2.38/sqrt(length(xparam1));
end
k = find(isnan(bayestopt_.jscale));
bayestopt_.jscale(k) = options_.mh_jscale;
% Build the dataset
if ~isempty(options_.datafile)
[~,name] = fileparts(options_.datafile);
if strcmp(name,M_.fname)
error('Data-file and mod-file are not allowed to have the same name. Please change the name of the data file.')
end
end
if isnan(options_.first_obs)
options_.first_obs=1;
end
[dataset_, dataset_info] = makedataset(options_, options_.dsge_var*options_.dsge_varlag, gsa_flag);
%set options for old interface from the ones for new interface
if ~isempty(dataset_)
options_.nobs = dataset_.nobs;
if options_.endogenous_prior
if ~isnan(dataset_info.missing.number_of_observations) && ~(dataset_info.missing.number_of_observations==0) %missing observations present
if dataset_info.missing.no_more_missing_observations<dataset_.nobs-10
fprintf('\ndynare_estimation_init: There are missing observations in the data.\n')
fprintf('dynare_estimation_init: I am computing the moments for the endogenous prior only\n')
fprintf('dynare_estimation_init: on the observations after the last missing one, i.e. %u.\n',dataset_info.missing.no_more_missing_observations)
else
fprintf('\ndynare_estimation_init: There are too many missing observations in the data.\n')
fprintf('dynare_estimation_init: The endogenous_prior-option needs a consistent sample of \n')
fprintf('dynare_estimation_init: at least 10 full observations at the end.\n')
error('The endogenous_prior-option does not support your missing data.')
end
end
end
end
% setting steadystate_check_flag option
if options_.diffuse_filter || options_.steadystate.nocheck
steadystate_check_flag = 0;
else
steadystate_check_flag = 1;
end
%check steady state at initial parameters
M_local = M_;
nvx = estim_params_.nvx;
ncx = estim_params_.ncx;
nvn = estim_params_.nvn;
ncn = estim_params_.ncn;
if estim_params_.np
M_local.params(estim_params_.param_vals(:,1)) = xparam1(nvx+ncx+nvn+ncn+1:end);
end
[oo_.steady_state, params,info] = evaluate_steady_state(oo_.steady_state,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_local,options_,steadystate_check_flag);
if info(1)
fprintf('\ndynare_estimation_init:: The steady state at the initial parameters cannot be computed.\n')
if options_.debug
M_local.params=params;
plist = list_of_parameters_calibrated_as_NaN(M_local);
if ~isempty(plist)
message = 'dynare_estimation_init:: Some of the parameters are NaN (' ;
for i=1:length(plist)
if i<length(plist)
message = [message, plist{i} ', '];
else
message = [message, plist{i} ')'];
end
end
end
fprintf('%s\n',message)
plist = list_of_parameters_calibrated_as_Inf(M_local);
if ~isempty(plist)
message = 'dynare_estimation_init:: Some of the parameters are Inf (' ;
for i=1:length(plist)
if i<size(plist)
message = [message, plist{i} ', '];
else
message = [message, plist{i} ')'];
end
end
end
fprintf('%s\n',message)
end
print_info(info, 0, options_);
end
% If the steady state of the observed variables is non zero, set noconstant equal 0 ()
if (~options_.loglinear && all(abs(oo_.steady_state(bayestopt_.mfys))<1e-9)) || (options_.loglinear && all(abs(log(oo_.steady_state(bayestopt_.mfys)))<1e-9))
options_.noconstant = 0; %identifying the constant based on just the initial parameter value is not feasible
else
options_.noconstant = 0;
% If the data are prefiltered then there must not be constants in the
% measurement equation of the DSGE model or in the DSGE-VAR model.
if options_.prefilter
skipline()
disp('You have specified the option "prefilter" to demean your data but the')
disp('steady state of of the observed variables is non zero.')
disp('Either change the measurement equations, by centering the observed')
disp('variables in the model block, or drop the prefiltering.')
error('The option "prefilter" is inconsistent with the non-zero mean measurement equations in the model.')
end
end
%% get the non-zero rows and columns of Sigma_e and H
estim_params_= get_matrix_entries_for_psd_check(M_,estim_params_);
if options_.load_results_after_load_mh
if ~exist([M_.dname filesep 'Output' filesep M_.fname '_results.mat'],'file')
fprintf('\ndynare_estimation_init:: You specified the load_results_after_load_mh, but no _results.mat-file\n')
fprintf('dynare_estimation_init:: was found. Results will be recomputed.\n')
options_.load_results_after_load_mh=0;
end
end
if options_.mh_replic || options_.load_mh_file
[current_options, options_, bayestopt_] = check_posterior_sampler_options([], M_.fname, M_.dname, options_, bounds, bayestopt_);
options_.posterior_sampler_options.current_options = current_options;
end
%% set heteroskedastic shocks
if options_.heteroskedastic_filter
if options_.fast_kalman_filter
error('estimation option conflict: "heteroskedastic_filter" incompatible with "fast_kalman_filter"')
end
if options_.analytic_derivation
error(['estimation option conflict: analytic_derivation isn''t available ' ...
'for heteroskedastic_filter'])
end
M_.heteroskedastic_shocks.Qvalue = NaN(M_.exo_nbr,options_.nobs+1);
M_.heteroskedastic_shocks.Qscale = NaN(M_.exo_nbr,options_.nobs+1);
for k=1:length(M_.heteroskedastic_shocks.Qvalue_orig)
v = M_.heteroskedastic_shocks.Qvalue_orig(k);
temp_periods=v.periods(v.periods<options_.nobs+options_.first_obs+1);
temp_periods=temp_periods(temp_periods>=options_.first_obs);
M_.heteroskedastic_shocks.Qvalue(v.exo_id, temp_periods-(options_.first_obs-1)) = v.value^2;
end
for k=1:length(M_.heteroskedastic_shocks.Qscale_orig)
v = M_.heteroskedastic_shocks.Qscale_orig(k);
temp_periods=v.periods(v.periods<options_.nobs+options_.first_obs+1);
temp_periods=temp_periods(temp_periods>=options_.first_obs);
M_.heteroskedastic_shocks.Qscale(v.exo_id, temp_periods-(options_.first_obs-1)) = v.scale^2;
end
if any(any(~isnan(M_.heteroskedastic_shocks.Qvalue) & ~isnan(M_.heteroskedastic_shocks.Qscale)))
fprintf('\ndynare_estimation_init: With the option "heteroskedastic_shocks" you cannot define\n')
fprintf('dynare_estimation_init: the scale and the value for the same shock \n')
fprintf('dynare_estimation_init: in the same period!\n')
error('Scale and value defined for the same shock in the same period with "heteroskedastic_shocks".')
end
end
if (options_.occbin.likelihood.status && options_.occbin.likelihood.inversion_filter) || (options_.occbin.smoother.status && options_.occbin.smoother.inversion_filter)
if isempty(options_.occbin.likelihood.IVF_shock_observable_mapping)
options_.occbin.likelihood.IVF_shock_observable_mapping=find(diag(M_local.Sigma_e)~=0);
else
zero_var_shocks=find(diag(M_local.Sigma_e)==0);
if any(ismember(options_.occbin.likelihood.IVF_shock_observable_mapping,zero_var_shocks))
error('IVF-filter: an observable is mapped to a zero variance shock.')
end
end
end
if options_.occbin.smoother.status && options_.occbin.smoother.inversion_filter
if ~isempty(options_.nk)
fprintf('dynare_estimation_init: the inversion filter does not support filter_step_ahead. Disabling the option.\n')
options_.nk=[];
end
if options_.filter_covariance
fprintf('dynare_estimation_init: the inversion filter does not support filter_covariance. Disabling the option.\n')
options_.filter_covariance=false;
end
if options_.smoothed_state_uncertainty
fprintf('dynare_estimation_init: the inversion filter does not support smoothed_state_uncertainty. Disabling the option.\n')
options_.smoothed_state_uncertainty=false;
end
end
if options_.occbin.smoother.status || options_.occbin.likelihood.status
if isfield(M_,'surprise_shocks') && ~isempty(M_.surprise_shocks)
fprintf('dynare_estimation_init: OccBin smoother/filter: previous shocks(surprise) block detected. Deleting its content.\n')
options_.occbin.simul.SHOCKS=zeros(1,M_.exo_nbr);
options_.occbin.simul.exo_pos=1:M_.exo_nbr;
M_.surprise_shocks=[];
end
end
|