1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
|
function oo_ = fill_mh_mode(xparam1, stdh, M_, options_, estim_params_, oo_, field_name)
% Fill oo_.<field_name>.mode and oo_.<field_name>.std_at_mode
%
% INPUTS
% - xparam1 [double] p×1 vector, estimated posterior mode.
% - stdh [double] p×1 vector, estimated posterior standard deviation.
% - M_ [struct] Description of the model.
% - estim_params_ [struct] Description of the estimated parameters.
% - options_ [struct] Dynare's options.
% - oo_ [struct] Estimation and simulation results.
%
% OUTPUTS
% - oo_ Matlab's structure gathering the results
%
% SPECIAL REQUIREMENTS
% None.
% Copyright © 2005-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
nvx = estim_params_.nvx; % Variance of the structural innovations (number of parameters).
nvn = estim_params_.nvn; % Variance of the measurement innovations (number of parameters).
ncx = estim_params_.ncx; % Covariance of the structural innovations (number of parameters).
ncn = estim_params_.ncn; % Covariance of the measurement innovations (number of parameters).
np = estim_params_.np ; % Number of deep parameters.
if np
ip = nvx+nvn+ncx+ncn+1;
for i=1:np
k = estim_params_.param_vals(i,1);
name = M_.param_names{k};
oo_.([field_name '_mode']).parameters.(name) = xparam1(ip);
oo_.([field_name '_std_at_mode']).parameters.(name) = stdh(ip);
ip = ip+1;
end
end
if nvx
ip = 1;
for i=1:nvx
k = estim_params_.var_exo(i,1);
name = M_.exo_names{k};
oo_.([field_name '_mode']).shocks_std.(name)= xparam1(ip);
oo_.([field_name '_std_at_mode']).shocks_std.(name) = stdh(ip);
ip = ip+1;
end
end
if nvn
ip = nvx+1;
for i=1:nvn
name = options_.varobs{estim_params_.nvn_observable_correspondence(i,1)};
oo_.([field_name '_mode']).measurement_errors_std.(name) = xparam1(ip);
oo_.([field_name '_std_at_mode']).measurement_errors_std.(name) = stdh(ip);
ip = ip+1;
end
end
if ncx
ip = nvx+nvn+1;
for i=1:ncx
k1 = estim_params_.corrx(i,1);
k2 = estim_params_.corrx(i,2);
NAME = [M_.exo_names{k1} '_' M_.exo_names{k2}];
oo_.([field_name '_mode']).shocks_corr.(name) = xparam1(ip);
oo_.([field_name '_std_at_mode']).shocks_corr.(name) = stdh(ip);
ip = ip+1;
end
end
if ncn
ip = nvx+nvn+ncx+1;
for i=1:ncn
k1 = estim_params_.corrn(i,1);
k2 = estim_params_.corrn(i,2);
NAME = [M_.endo_names{k1} '_' M_.endo_names{k2}];
oo_.([field_name '_mode']).measurement_errors_corr.(name) = xparam1(ip);
oo_.([field_name '_std_at_mode']).measurement_errors_corr.(name) = stdh(ip);
ip = ip+1;
end
end
|