1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
function oo_ = initial_estimation_checks(objective_function,xparam1,dataset_,dataset_info,M_,estim_params_,options_,bayestopt_,BoundsInfo,oo_)
% function oo_ = initial_estimation_checks(objective_function,xparam1,dataset_,dataset_info,M_,estim_params_,options_,bayestopt_,BoundsInfo,oo_)
% Checks data (complex values, ML evaluation, initial values, BK conditions,..)
%
% INPUTS
% objective_function [function handle] of the objective function
% xparam1 [vector] of parameters to be estimated
% dataset_ [dseries] object storing the dataset
% dataset_info [structure] storing informations about the sample.
% M_ [structure] describing the model
% estim_params_ [structure] characterizing parameters to be estimated
% options_ [structure] describing the options
% bayestopt_ [structure] describing the priors
% BoundsInfo [structure] containing prior bounds
% oo_ [structure] storing the results
%
% OUTPUTS
% oo_ [structure] storing the results
%
% SPECIAL REQUIREMENTS
% none
% Copyright © 2003-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
%get maximum number of simultaneously observed variables for stochastic
%singularity check
maximum_number_non_missing_observations=max(sum(~isnan(dataset_.data(2:end,:)),2));
init_number_non_missing_observations=sum(~isnan(dataset_.data(1,:)),2);
if options_.heteroskedastic_filter
if options_.order>1
error('initial_estimation_checks:: heteroskedastic shocks are only supported with the Kalman filter/smoother')
end
observations_by_period=sum(~isnan(dataset_.data),2);
base_shocks = find(diag(M_.Sigma_e));
zero_shocks = ~ismember(1:M_.exo_nbr,base_shocks);
non_zero_shocks_by_period=repmat(length(base_shocks),size(observations_by_period));
% check periods for which base shocks are scaled to zero
non_zero_shocks_by_period = non_zero_shocks_by_period-sum(M_.heteroskedastic_shocks.Qscale(base_shocks,1:options_.nobs)==0,1)';
% check periods for which base shocks are set to zero
non_zero_shocks_by_period = non_zero_shocks_by_period-sum(M_.heteroskedastic_shocks.Qvalue(base_shocks,1:options_.nobs)==0,1)';
% check periods for which other shocks are set to a positive number
non_zero_shocks_by_period = non_zero_shocks_by_period+sum(M_.heteroskedastic_shocks.Qvalue(zero_shocks,1:options_.nobs)>0,1)';
end
if options_.order>1
if any(any(isnan(dataset_.data)))
error('initial_estimation_checks:: particle filtering does not support missing observations')
end
if options_.prefilter==1
error('initial_estimation_checks:: particle filtering does not support the prefilter option')
end
if bayestopt_.with_trend
error('initial_estimation_checks:: particle filtering does not support trends')
end
if options_.order>3 && options_.particle.pruning==1
error('initial_estimation_checks:: the particle filter with order>3 does not support pruning')
end
if options_.particle.pruning~=options_.pruning
warning('initial_estimation_checks:: the pruning settings differ between the particle filter and the one used for IRFs/simulations. Make sure this is intended.')
end
end
if options_.occbin.likelihood.status || options_.occbin.smoother.status
if options_.prefilter
error('initial_estimation_checks:: Occbin is incompatible with the prefilter option due to the sample mean generally not corresponding to the steady state with an occasionally binding constraint.')
end
if ~options_.occbin.likelihood.inversion_filter && (options_.kalman_algo==2 || options_.kalman_algo==4)
error('initial_estimation_checks:: Occbin is incompatible with the selected univariate Kalman filter.')
end
if options_.fast_kalman_filter
error('initial_estimation_checks:: Occbin is incompatible with the fast Kalman filter.')
end
if options_.bayesian_irf
error('initial_estimation_checks:: Occbin is incompatible with the bayesian_irf option.')
end
if options_.moments_varendo
error('initial_estimation_checks:: Occbin is incompatible with the moments_varendo option.')
end
if options_.forecast
error('initial_estimation_checks:: Occbin is incompatible with the forecast option.')
end
end
if (options_.occbin.likelihood.status && options_.occbin.likelihood.inversion_filter) || (options_.occbin.smoother.status && options_.occbin.smoother.inversion_filter)
err_index= find(diag(M_.Sigma_e)~=0);
if length(err_index)~=length(options_.varobs)
fprintf('initial_estimation_checks:: The IVF requires exactly as many shocks as observables.')
end
var_index=find(any(isnan(dataset_.data)));
if ~isempty(var_index)
fprintf('initial_estimation_checks:: The IVF requires exactly as many shocks as observables.\n')
fprintf('initial_estimation_checks:: The data series %s contains NaN, I am therefore dropping shock %s for these time points.\n',...
options_.varobs{var_index},M_.exo_names{options_.occbin.likelihood.IVF_shock_observable_mapping(var_index)})
end
end
if options_.order>1 || (options_.order==1 && ~ischar(options_.mode_compute) && options_.mode_compute==11)
if options_.order==1 && options_.mode_compute==11
disp_string='mode_compute=11';
else
disp_string='particle filtering';
end
if M_.H==0
error('initial_estimation_checks:: %s requires measurement error on the observables',disp_string)
else
if sum(diag(M_.H)>0)<length(options_.varobs)
error('initial_estimation_checks:: %s requires as many measurement errors as observed variables',disp_string)
else
[~,flag]=chol(M_.H);
if flag
error('initial_estimation_checks:: the measurement error matrix must be positive definite')
end
end
end
end
non_zero_ME=length(estim_params_.H_entries_to_check_for_positive_definiteness);
print_init_check_warning=false;
if maximum_number_non_missing_observations>M_.exo_nbr+non_zero_ME
error('initial_estimation_checks:: Estimation can''t take place because there are less declared shocks than observed variables!')
end
if init_number_non_missing_observations>M_.exo_nbr+non_zero_ME
if options_.no_init_estimation_check_first_obs
print_init_check_warning=true;
else
error('initial_estimation_checks:: Estimation can''t take place because there are less declared shocks than observed variables in first period!')
end
end
if options_.heteroskedastic_filter
if any(observations_by_period>(non_zero_shocks_by_period+non_zero_ME))
error('initial_estimation_checks:: Estimation can''t take place because too many shocks have been calibrated with a zero variance: Check heteroskedastic block and shocks calibration!')
end
else
if maximum_number_non_missing_observations>length(find(diag(M_.Sigma_e)))+non_zero_ME
error('initial_estimation_checks:: Estimation can''t take place because too many shocks have been calibrated with a zero variance!')
end
end
if init_number_non_missing_observations>length(find(diag(M_.Sigma_e)))+non_zero_ME
if options_.no_init_estimation_check_first_obs
print_init_check_warning=true;
else
error('initial_estimation_checks:: Estimation can''t take place because too many shocks have been calibrated with a zero variance in first period!')
end
end
if print_init_check_warning
fprintf('ESTIMATION_CHECKS: You decided to ignore test of stochastic singularity in first_obs.\n');
fprintf('ESTIMATION_CHECKS: If this was not done on purpose (typically when observing a stock variable [capital] in first period, on top of its flow [investment]),\n');
fprintf('ESTIMATION_CHECKS: it may lead to a crash or provide undesired/wrong results later on!\n');
end
if (any(bayestopt_.pshape >0 ) && options_.mh_replic) && options_.mh_nblck<1
error('initial_estimation_checks:: Bayesian estimation cannot be conducted with mh_nblocks=0.')
end
if options_.mh_drop<0 || options_.mh_drop>=1
error('initial_estimation_checks:: mh_drop must be in [0,1).')
end
% check and display warnings if steady-state solves static model (except if diffuse_filter == 1) and if steady-state changes estimated parameters
[oo_.steady_state] = check_steady_state_changes_parameters(M_,estim_params_,oo_,options_, [options_.diffuse_filter==0 options_.diffuse_filter==0] );
% check and display warning if negative values of stderr or corr params are outside unit circle for Bayesian estimation
if any(bayestopt_.pshape)
check_prior_stderr_corr(estim_params_,bayestopt_);
end
% display warning if some parameters are still NaN
test_for_deep_parameters_calibration(M_);
[~,~,~,info]= priordens(xparam1,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7,bayestopt_.p3,bayestopt_.p4);
if any(info)
fprintf('The prior density evaluated at the initial values is Inf for the following parameters: %s\n',bayestopt_.name{info,1})
error('The initial value of the prior is -Inf')
end
if isfield(M_,'filter_initial_state') && ~isempty(M_.filter_initial_state)
state_indices=oo_.dr.order_var(oo_.dr.restrict_var_list(bayestopt_.mf0));
for ii=1:size(state_indices,1)
if ~isempty(M_.filter_initial_state{state_indices(ii),1})
try
evaluate_expression(M_.filter_initial_state{state_indices(ii),2},M_,oo_)
catch
fprintf('Unable to evaluate the expression\n %s \nfor the filter_initial_state of variable %s\n',M_.filter_initial_state{state_indices(ii),2},M_.endo_names(state_indices(ii),:))
end
end
end
end
if ~isreal(dataset_.data)
error('initial_estimation_checks: the data contains complex values.')
end
% Evaluate the likelihood.
ana_deriv = options_.analytic_derivation;
options_.analytic_derivation=0;
if ~isequal(options_.mode_compute,11) || ...
(isequal(options_.mode_compute,11) && isequal(options_.order,1))
%shut off potentially automatic switch to diffuse filter for the
%purpose of checking stochastic singularity
use_univariate_filters_if_singularity_is_detected_old=options_.use_univariate_filters_if_singularity_is_detected;
options_.use_univariate_filters_if_singularity_is_detected=0;
[fval,info] = feval(objective_function,xparam1,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,BoundsInfo,oo_.dr,oo_.steady_state,oo_.exo_steady_state,oo_.exo_det_steady_state);
if info(1)==50
fprintf('\ninitial_estimation_checks:: The forecast error variance in the multivariate Kalman filter became singular.\n')
fprintf('initial_estimation_checks:: This is often a sign of stochastic singularity, but can also sometimes happen by chance\n')
fprintf('initial_estimation_checks:: for a particular combination of parameters and data realizations.\n')
fprintf('initial_estimation_checks:: If you think the latter is the case, you should try with different initial values for the estimated parameters.\n')
error('initial_estimation_checks:: The forecast error variance in the multivariate Kalman filter became singular.')
end
if info(1)==201 || info(1)==202
message=get_error_message(info,options_);
error('initial_estimation_checks:: %s.',message)
end
%reset options
options_.use_univariate_filters_if_singularity_is_detected=use_univariate_filters_if_singularity_is_detected_old;
else
info=0;
fval = 0;
end
if options_.debug
oo_.likelihood_at_initial_parameters=fval;
end
options_.analytic_derivation=ana_deriv;
if options_.mode_compute==13
error('Options mode_compute=13 is only compatible with quadratic objective functions')
end
if isnan(fval)
error('The initial value of the likelihood is NaN')
elseif imag(fval)
error('The initial value of the likelihood is complex')
end
if info(1) > 0
if options_.order>1
[eigenvalues_] = check(M_,options_, oo_);
if any(abs(1-abs(eigenvalues_))<abs(options_.qz_criterium-1))
error('Your model has at least one unit root and you are using a nonlinear filter. Please set nonlinear_filter_initialization=3.')
end
else
disp('Error in computing likelihood for initial parameter values')
print_info(info, options_.noprint, options_)
end
end
if options_.prefilter==1
if (~options_.loglinear && any(abs(oo_.steady_state(bayestopt_.mfys))>1e-9)) || (options_.loglinear && any(abs(log(oo_.steady_state(bayestopt_.mfys)))>1e-9))
disp('You are trying to estimate a model with a non zero steady state for the observed endogenous')
disp('variables using demeaned data!')
error('You should change something in your mod file...')
end
end
if ~isequal(options_.mode_compute,11)
disp(['Initial value of the log posterior (or likelihood): ' num2str(-fval)]);
end
if options_.mh_tune_jscale.status && (options_.mh_tune_jscale.maxiter<options_.mh_tune_jscale.stepsize)
warning('You specified mh_tune_jscale, but the maximum number of iterations is smaller than the step size. No update will take place.')
end
if ~isempty(options_.conditional_variance_decomposition) && ~options_.moments_varendo
disp('The conditional_variance_decomposition-option will be ignored. You need to set moments_varendo');
end
function evaluate_expression(expression,M_,oo_)
% function evaluate_expression(expression,M_,oo_)
%evaluates expressions relying on M_ and oo_ having their original names
eval(expression);
|