File: mode_check.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (230 lines) | stat: -rw-r--r-- 10,511 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
function mcheck = mode_check(fun,xparam,hessian_mat,options_,M_,estim_params_,bayestopt_,bounds,isMinimum, varargin)
% function mcheck = mode_check(fun,xparam,hessian_mat,options_,M_,estim_params_,bayestopt_,bounds,isMinimum, varargin)
% -------------------------------------------------------------------------
% Checks the estimated ML or Posterior mode/minimum by plotting sections of
% the likelihood/posterior kernel. Each plot shows the variation of the
% function implied by the variations of a single parameter ( ceteris paribus)
% -------------------------------------------------------------------------
% INPUTS
% - fun:            [func_handle]  objective function
% - xparam:         [vector]       estimated mode/minimum
% - hessian_mat:    [matrix]       hessian of the objective function at the estimated mode/minimum
% - options_:       [structure]    Dynare options structure
% - M_:             [structure]    Dynare model structure
% - estim_params_:  [structure]    Dynare estimated parameters structure
% - bayestopt_:     [structure]    information on the priors
% - bounds:         [structure]    information on the bounds
% - isMinimum:      [boolean]      true if xparam is a minimum, false if it is a mode
% - varargin:       [cell]         additional arguments to be passed to fun
% -------------------------------------------------------------------------
% OUTPUTS
% - mcheck: [structure]     structure containing the data for the check plots
% - Saves the plots in the graphs folder and the data in a mat file
% -------------------------------------------------------------------------
% This function is called by
% - dynare_estimation_1
% - mom.run
% -------------------------------------------------------------------------

% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

tolBounds = 1e-8;

fval = feval(fun,xparam,varargin{:});

if ~isempty(hessian_mat)
    [ s_min, k ] = min(diag(hessian_mat));
    if isMinimum
        fprintf('\nMINIMUM CHECK\n\nFval obtained by the optimization routine: %f\n', fval)
    else
        fprintf('\nMODE CHECK\n\nFval obtained by the optimization routine: %f\n', fval)        
    end
    if s_min<eps
        fprintf('Most negative variance %f for parameter %d (%s = %f)\n', s_min, k , bayestopt_.name{k}, xparam(k));
    end
end

[nbplt,nr,nc,~,~,nstar] = pltorg(length(xparam));

graphsFolder = CheckPath('graphs',M_.dname);
latexFolder = CheckPath('latex',M_.dname);

if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
    fidTeX = fopen([latexFolder filesep M_.fname '_CheckPlots.tex'],'w');
    fprintf(fidTeX,'%% TeX eps-loader file generated by mode_check.m (Dynare).\n');
    fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
    fprintf(fidTeX,' \n');
end

ll = options_.mode_check.neighbourhood_size;
if isinf(ll)
    options_.mode_check.symmetric_plots = false;
end

if isMinimum
    mcheck = struct('cross',struct(),'emin',struct());
else
    mcheck = struct('cross',struct(),'emode',struct());
end

for plt = 1:nbplt
    if options_.TeX
        NAMES = [];
        TeXNAMES = [];
    end
    if isMinimum
        hh_fig = dyn_figure(options_.nodisplay,'Name','Minimum check plots');
    else
        hh_fig = dyn_figure(options_.nodisplay,'Name','Mode check plots');
    end
    for k = 1:min(nstar,length(xparam)-(plt-1)*nstar)
        subplot(nr,nc,k)
        kk = (plt-1)*nstar+k;
        [name,texname] = get_the_name(kk,options_.TeX,M_,estim_params_,options_.varobs);
        xx = xparam;
        if xparam(kk)~=0 && ~isinf(bounds.lb(kk)) && ~isinf(bounds.ub(kk))
            l1 = max(bounds.lb(kk),(1-sign(xparam(kk))*ll)*xparam(kk)); m1 = 0; % lower bound
            l2 = min(bounds.ub(kk),(1+sign(xparam(kk))*ll)*xparam(kk));         % upper bound
        else
            % size info for 0 parameter is missing, use prior standard deviation
            upper_bound = bounds.lb(kk);
            if isinf(upper_bound)
                upper_bound = -1e-6*options_.huge_number;
            end
            lower_bound = bounds.ub(kk);
            if isinf(lower_bound)
                lower_bound = -1e-6*options_.huge_number;
            end
            l1 = max(lower_bound,-bayestopt_.p2(kk)); m1 = 0; % lower bound
            l2 = min(upper_bound,bayestopt_.p2(kk));          % upper bound
        end
        binding_lower_bound = 0;
        binding_upper_bound = 0;
        if abs(xparam(kk)-bounds.lb(kk))<tolBounds
            binding_lower_bound = 1;
            bound_value = bounds.lb(kk);
        elseif abs(xparam(kk)-bounds.ub(kk))<tolBounds
            binding_upper_bound = 1;
            bound_value = bounds.ub(kk);
        end
        if options_.mode_check.symmetric_plots && ~binding_lower_bound && ~binding_upper_bound
            if l2<(1+ll)*xparam(kk) % test whether upper bound is too small due to prior binding
                l1 = xparam(kk) - (l2-xparam(kk)); % adjust lower bound to become closer
                m1 = 1;
            end
            if ~m1 && (l1>(1-ll)*xparam(kk)) && (xparam(kk)+(xparam(kk)-l1)<bounds.ub(kk)) % if lower bound was truncated and using difference from lower bound does not violate upper bound
                l2 = xparam(kk) + (xparam(kk)-l1); % set upper bound to same distance as lower bound
            end
        end
        z1 = l1:((xparam(kk)-l1)/(options_.mode_check.number_of_points/2)):xparam(kk);
        z2 = xparam(kk):((l2-xparam(kk))/(options_.mode_check.number_of_points/2)):l2;
        z  = union(z1,z2);
        if ~options_.mode_check.nolik
            y = zeros(length(z),2);
            if isfield(options_,'mom') && ( (strcmp(options_.mom.mom_method,'GMM') || strcmp(options_.mom.mom_method,'SMM')) && options_.mom.penalized_estimator )
                dy = (xx-bayestopt_.p1)'/diag(bayestopt_.p2.^2)*(xx-bayestopt_.p1);
            else
                dy = priordens(xx,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7,bayestopt_.p3,bayestopt_.p4);
            end
        end
        for i = 1:length(z)
            xx(kk) = z(i);
            [fval, info, exit_flag] = feval(fun,xx, varargin{:});                
            if exit_flag
                y(i,1) = fval;
            else
                y(i,1) = NaN;
                if options_.debug
                    fprintf('mode_check:: could not solve model for parameter %s at value %4.3f, error code: %u (%s)\n',name,z(i),info(1),get_error_message(info, options_));
                end
            end
            if ~options_.mode_check.nolik
                if isfield(options_,'mom') && ( (strcmp(options_.mom.mom_method,'GMM') || strcmp(options_.mom.mom_method,'SMM')) && options_.mom.penalized_estimator )
                    lnprior = (xx-bayestopt_.p1)'/diag(bayestopt_.p2.^2)*(xx-bayestopt_.p1);
                else
                    lnprior = priordens(xx,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7,bayestopt_.p3,bayestopt_.p4);
                end
                y(i,2)  = (y(i,1)+lnprior-dy);
            end
        end
        if isMinimum
            mcheck.cross = setfield(mcheck.cross, name, [transpose(z), y]); % keep y
            mcheck.emin = setfield(mcheck.emin, name, xparam(kk));          % store as min
            fighandle = plot(z,y);
        else
            mcheck.cross = setfield(mcheck.cross, name, [transpose(z), -y]); % multiply y by -1
            mcheck.emode = setfield(mcheck.emode, name, xparam(kk));         % store as mode
            fighandle = plot(z,-y);
        end        
        hold on
        yl = get(gca,'ylim');
        plot( [xparam(kk) xparam(kk)], yl, 'c', 'LineWidth', 1);
        NaN_index = find(isnan(y(:,1)));
        zNaN = z(NaN_index);
        yNaN = yl(1)*ones(size(NaN_index));
        plot(zNaN,yNaN,'o','MarkerEdgeColor','r','MarkerFaceColor','r','MarkerSize',6);
        if options_.TeX
            title(texname,'interpreter','latex')
        else
            title(name,'interpreter','none')
        end
        axis tight
        if binding_lower_bound || binding_upper_bound
            xl = get(gca,'xlim');
            plot( [bound_value bound_value], yl, 'r--', 'LineWidth', 1);
            xlim([xl(1)-0.5*binding_lower_bound*(xl(2)-xl(1)) xl(2)+0.5*binding_upper_bound*(xl(2)-xl(1))]);
        end
        hold off
        drawnow
    end
    if ~options_.mode_check.nolik
        if isoctave
            axes('outerposition',[0.3 0.93 0.42 0.07],'box','on');
        else
            axes('position',[0.3 0.01 0.42 0.05],'box','on');
        end
        line_color=get(fighandle,'color');
        plot([0.48 0.68],[0.5 0.5],'color',line_color{2});
        hold on;
        plot([0.04 0.24],[0.5 0.5],'color',line_color{1});
        set(gca,'xlim',[0 1],'ylim',[0 1],'xtick',[],'ytick',[]);
        if isMinimum
            text(0.25,0.5,'log-post');
            text(0.69,0.5,'log-dist kernel');
        else
            text(0.25,0.5,'log-post');
            text(0.69,0.5,'log-lik kernel');
        end
    end
    dyn_saveas(hh_fig,[graphsFolder filesep M_.fname '_CheckPlots' int2str(plt) ],options_.nodisplay,options_.graph_format);
    if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
        % TeX eps loader file
        fprintf(fidTeX,'\\begin{figure}[H]\n');
        fprintf(fidTeX,'\\centering \n');
        fprintf(fidTeX,'\\includegraphics[width=%2.2f\\textwidth]{%s_CheckPlots%s}\n',options_.figures.textwidth*min(k/nc,1),[graphsFolder '/' M_.fname],int2str(plt)); % don't use filesep as it will create issues with LaTeX on Windows
        fprintf(fidTeX,'\\caption{Check plots.}');
        fprintf(fidTeX,'\\label{Fig:CheckPlots:%s}\n',int2str(plt));
        fprintf(fidTeX,'\\end{figure}\n');
        fprintf(fidTeX,' \n');
    end
end
if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
    fclose(fidTeX);
end

save([graphsFolder filesep M_.fname '_check_plot_data.mat'],'mcheck');