1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
function mcheck = mode_check(fun,xparam,hessian_mat,options_,M_,estim_params_,bayestopt_,bounds,isMinimum, varargin)
% function mcheck = mode_check(fun,xparam,hessian_mat,options_,M_,estim_params_,bayestopt_,bounds,isMinimum, varargin)
% -------------------------------------------------------------------------
% Checks the estimated ML or Posterior mode/minimum by plotting sections of
% the likelihood/posterior kernel. Each plot shows the variation of the
% function implied by the variations of a single parameter ( ceteris paribus)
% -------------------------------------------------------------------------
% INPUTS
% - fun: [func_handle] objective function
% - xparam: [vector] estimated mode/minimum
% - hessian_mat: [matrix] hessian of the objective function at the estimated mode/minimum
% - options_: [structure] Dynare options structure
% - M_: [structure] Dynare model structure
% - estim_params_: [structure] Dynare estimated parameters structure
% - bayestopt_: [structure] information on the priors
% - bounds: [structure] information on the bounds
% - isMinimum: [boolean] true if xparam is a minimum, false if it is a mode
% - varargin: [cell] additional arguments to be passed to fun
% -------------------------------------------------------------------------
% OUTPUTS
% - mcheck: [structure] structure containing the data for the check plots
% - Saves the plots in the graphs folder and the data in a mat file
% -------------------------------------------------------------------------
% This function is called by
% - dynare_estimation_1
% - mom.run
% -------------------------------------------------------------------------
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
tolBounds = 1e-8;
fval = feval(fun,xparam,varargin{:});
if ~isempty(hessian_mat)
[ s_min, k ] = min(diag(hessian_mat));
if isMinimum
fprintf('\nMINIMUM CHECK\n\nFval obtained by the optimization routine: %f\n', fval)
else
fprintf('\nMODE CHECK\n\nFval obtained by the optimization routine: %f\n', fval)
end
if s_min<eps
fprintf('Most negative variance %f for parameter %d (%s = %f)\n', s_min, k , bayestopt_.name{k}, xparam(k));
end
end
[nbplt,nr,nc,~,~,nstar] = pltorg(length(xparam));
graphsFolder = CheckPath('graphs',M_.dname);
latexFolder = CheckPath('latex',M_.dname);
if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
fidTeX = fopen([latexFolder filesep M_.fname '_CheckPlots.tex'],'w');
fprintf(fidTeX,'%% TeX eps-loader file generated by mode_check.m (Dynare).\n');
fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
fprintf(fidTeX,' \n');
end
ll = options_.mode_check.neighbourhood_size;
if isinf(ll)
options_.mode_check.symmetric_plots = false;
end
if isMinimum
mcheck = struct('cross',struct(),'emin',struct());
else
mcheck = struct('cross',struct(),'emode',struct());
end
for plt = 1:nbplt
if options_.TeX
NAMES = [];
TeXNAMES = [];
end
if isMinimum
hh_fig = dyn_figure(options_.nodisplay,'Name','Minimum check plots');
else
hh_fig = dyn_figure(options_.nodisplay,'Name','Mode check plots');
end
for k = 1:min(nstar,length(xparam)-(plt-1)*nstar)
subplot(nr,nc,k)
kk = (plt-1)*nstar+k;
[name,texname] = get_the_name(kk,options_.TeX,M_,estim_params_,options_.varobs);
xx = xparam;
if xparam(kk)~=0 && ~isinf(bounds.lb(kk)) && ~isinf(bounds.ub(kk))
l1 = max(bounds.lb(kk),(1-sign(xparam(kk))*ll)*xparam(kk)); m1 = 0; % lower bound
l2 = min(bounds.ub(kk),(1+sign(xparam(kk))*ll)*xparam(kk)); % upper bound
else
% size info for 0 parameter is missing, use prior standard deviation
upper_bound = bounds.lb(kk);
if isinf(upper_bound)
upper_bound = -1e-6*options_.huge_number;
end
lower_bound = bounds.ub(kk);
if isinf(lower_bound)
lower_bound = -1e-6*options_.huge_number;
end
l1 = max(lower_bound,-bayestopt_.p2(kk)); m1 = 0; % lower bound
l2 = min(upper_bound,bayestopt_.p2(kk)); % upper bound
end
binding_lower_bound = 0;
binding_upper_bound = 0;
if abs(xparam(kk)-bounds.lb(kk))<tolBounds
binding_lower_bound = 1;
bound_value = bounds.lb(kk);
elseif abs(xparam(kk)-bounds.ub(kk))<tolBounds
binding_upper_bound = 1;
bound_value = bounds.ub(kk);
end
if options_.mode_check.symmetric_plots && ~binding_lower_bound && ~binding_upper_bound
if l2<(1+ll)*xparam(kk) % test whether upper bound is too small due to prior binding
l1 = xparam(kk) - (l2-xparam(kk)); % adjust lower bound to become closer
m1 = 1;
end
if ~m1 && (l1>(1-ll)*xparam(kk)) && (xparam(kk)+(xparam(kk)-l1)<bounds.ub(kk)) % if lower bound was truncated and using difference from lower bound does not violate upper bound
l2 = xparam(kk) + (xparam(kk)-l1); % set upper bound to same distance as lower bound
end
end
z1 = l1:((xparam(kk)-l1)/(options_.mode_check.number_of_points/2)):xparam(kk);
z2 = xparam(kk):((l2-xparam(kk))/(options_.mode_check.number_of_points/2)):l2;
z = union(z1,z2);
if ~options_.mode_check.nolik
y = zeros(length(z),2);
if isfield(options_,'mom') && ( (strcmp(options_.mom.mom_method,'GMM') || strcmp(options_.mom.mom_method,'SMM')) && options_.mom.penalized_estimator )
dy = (xx-bayestopt_.p1)'/diag(bayestopt_.p2.^2)*(xx-bayestopt_.p1);
else
dy = priordens(xx,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7,bayestopt_.p3,bayestopt_.p4);
end
end
for i = 1:length(z)
xx(kk) = z(i);
[fval, info, exit_flag] = feval(fun,xx, varargin{:});
if exit_flag
y(i,1) = fval;
else
y(i,1) = NaN;
if options_.debug
fprintf('mode_check:: could not solve model for parameter %s at value %4.3f, error code: %u (%s)\n',name,z(i),info(1),get_error_message(info, options_));
end
end
if ~options_.mode_check.nolik
if isfield(options_,'mom') && ( (strcmp(options_.mom.mom_method,'GMM') || strcmp(options_.mom.mom_method,'SMM')) && options_.mom.penalized_estimator )
lnprior = (xx-bayestopt_.p1)'/diag(bayestopt_.p2.^2)*(xx-bayestopt_.p1);
else
lnprior = priordens(xx,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7,bayestopt_.p3,bayestopt_.p4);
end
y(i,2) = (y(i,1)+lnprior-dy);
end
end
if isMinimum
mcheck.cross = setfield(mcheck.cross, name, [transpose(z), y]); % keep y
mcheck.emin = setfield(mcheck.emin, name, xparam(kk)); % store as min
fighandle = plot(z,y);
else
mcheck.cross = setfield(mcheck.cross, name, [transpose(z), -y]); % multiply y by -1
mcheck.emode = setfield(mcheck.emode, name, xparam(kk)); % store as mode
fighandle = plot(z,-y);
end
hold on
yl = get(gca,'ylim');
plot( [xparam(kk) xparam(kk)], yl, 'c', 'LineWidth', 1);
NaN_index = find(isnan(y(:,1)));
zNaN = z(NaN_index);
yNaN = yl(1)*ones(size(NaN_index));
plot(zNaN,yNaN,'o','MarkerEdgeColor','r','MarkerFaceColor','r','MarkerSize',6);
if options_.TeX
title(texname,'interpreter','latex')
else
title(name,'interpreter','none')
end
axis tight
if binding_lower_bound || binding_upper_bound
xl = get(gca,'xlim');
plot( [bound_value bound_value], yl, 'r--', 'LineWidth', 1);
xlim([xl(1)-0.5*binding_lower_bound*(xl(2)-xl(1)) xl(2)+0.5*binding_upper_bound*(xl(2)-xl(1))]);
end
hold off
drawnow
end
if ~options_.mode_check.nolik
if isoctave
axes('outerposition',[0.3 0.93 0.42 0.07],'box','on');
else
axes('position',[0.3 0.01 0.42 0.05],'box','on');
end
line_color=get(fighandle,'color');
plot([0.48 0.68],[0.5 0.5],'color',line_color{2});
hold on;
plot([0.04 0.24],[0.5 0.5],'color',line_color{1});
set(gca,'xlim',[0 1],'ylim',[0 1],'xtick',[],'ytick',[]);
if isMinimum
text(0.25,0.5,'log-post');
text(0.69,0.5,'log-dist kernel');
else
text(0.25,0.5,'log-post');
text(0.69,0.5,'log-lik kernel');
end
end
dyn_saveas(hh_fig,[graphsFolder filesep M_.fname '_CheckPlots' int2str(plt) ],options_.nodisplay,options_.graph_format);
if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
% TeX eps loader file
fprintf(fidTeX,'\\begin{figure}[H]\n');
fprintf(fidTeX,'\\centering \n');
fprintf(fidTeX,'\\includegraphics[width=%2.2f\\textwidth]{%s_CheckPlots%s}\n',options_.figures.textwidth*min(k/nc,1),[graphsFolder '/' M_.fname],int2str(plt)); % don't use filesep as it will create issues with LaTeX on Windows
fprintf(fidTeX,'\\caption{Check plots.}');
fprintf(fidTeX,'\\label{Fig:CheckPlots:%s}\n',int2str(plt));
fprintf(fidTeX,'\\end{figure}\n');
fprintf(fidTeX,' \n');
end
end
if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
fclose(fidTeX);
end
save([graphsFolder filesep M_.fname '_check_plot_data.mat'],'mcheck');
|