1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
function [fval,info,exit_flag,DLIK,Hess,ys,trend_coeff,M_,options_,bayestopt_,dr] = non_linear_dsge_likelihood(xparam1,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,BoundsInfo,dr, endo_steady_state, exo_steady_state, exo_det_steady_state)
% [fval,info,exit_flag,DLIK,Hess,ys,trend_coeff,M_,options_,bayestopt_,dr] = non_linear_dsge_likelihood(xparam1,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,BoundsInfo,dr, endo_steady_state, exo_steady_state, exo_det_steady_state)
% Evaluates the posterior kernel of a dsge model using a non linear filter.
%
% INPUTS
% - xparam1 [double] n×1 vector, estimated parameters.
% - dataset_ [struct] Matlab's structure containing the dataset
% - dataset_info [struct] Matlab's structure describing the dataset
% - options_ [struct] Matlab's structure describing the options
% - M_ [struct] Matlab's structure describing the M_
% - estim_params_ [struct] Matlab's structure describing the estimated_parameters
% - bayestopt_ [struct] Matlab's structure describing the priors
% - BoundsInfo [struct] Matlab's structure specifying the bounds on the paramater values
% - dr [structure] Reduced form model.
% - endo_steady_state [vector] steady state value for endogenous variables
% - exo_steady_state [vector] steady state value for exogenous variables
% - exo_det_steady_state [vector] steady state value for exogenous deterministic variables
%
% OUTPUTS
% - fval [double] scalar, value of the likelihood or posterior kernel.
% - info [integer] 4×1 vector, informations resolution of the model and evaluation of the likelihood.
% - exit_flag [integer] scalar, equal to 1 (no issues when evaluating the likelihood) or 0 (not able to evaluate the likelihood).
% - DLIK [double] Empty array.
% - Hess [double] Empty array.
% - ys [double] Empty array.
% - trend_coeff [double] Empty array.
% - M_ [struct] Updated M_ structure described in INPUTS section.
% - options_ [struct] Updated options_ structure described in INPUTS section.
% - bayestopt_ [struct] See INPUTS section.
% - dr [struct] decision rule structure described in INPUTS section.
% Copyright © 2010-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
% Initialization of the returned arguments.
fval = [];
ys = [];
trend_coeff = [];
exit_flag = 1;
DLIK = [];
Hess = [];
% Ensure that xparam1 is a column vector.
% (Don't do the transformation if xparam1 is empty, otherwise it would become a
% 0×1 matrix, which create issues with older MATLABs when comparing with [] in
% check_bounds_and_definiteness_estimation)
if ~isempty(xparam1)
xparam1 = xparam1(:);
end
% Issue an error if loglinear option is used.
if options_.loglinear
error('non_linear_dsge_likelihood: It is not possible to use a non linear filter with the option loglinear!')
end
%------------------------------------------------------------------------------
% 1. Get the structural parameters & define penalties
%------------------------------------------------------------------------------
M_ = set_all_parameters(xparam1,estim_params_,M_);
[fval,info,exit_flag,Q,H]=check_bounds_and_definiteness_estimation(xparam1, M_, estim_params_, BoundsInfo);
if info(1)
return
end
%------------------------------------------------------------------------------
% 2. call model setup & reduction program
%------------------------------------------------------------------------------
% Linearize the model around the deterministic steadystate and extract the matrices of the state equation (T and R).
[dr, info, M_.params] = resol(0, M_, options_, dr , endo_steady_state, exo_steady_state, exo_det_steady_state);
if info(1)
if info(1) == 3 || info(1) == 4 || info(1) == 5 || info(1)==6 ||info(1) == 19 || ...
info(1) == 20 || info(1) == 21 || info(1) == 23 || info(1) == 26 || ...
info(1) == 81 || info(1) == 84 || info(1) == 85
%meaningful second entry of output that can be used
fval = Inf;
info(4) = info(2);
exit_flag = 0;
return
else
fval = Inf;
info(4) = 0.1;
exit_flag = 0;
return
end
end
% Define a vector of indices for the observed variables. Is this really usefull?...
bayestopt_.mf = bayestopt_.mf1;
% Get needed informations for kalman filter routines.
start = options_.presample+1;
Y = transpose(dataset_.data);
%------------------------------------------------------------------------------
% 3. Initial condition of the Kalman filter
%------------------------------------------------------------------------------
mf0 = bayestopt_.mf0;
mf1 = bayestopt_.mf1;
restrict_variables_idx = dr.restrict_var_list;
state_variables_idx = restrict_variables_idx(mf0);
number_of_state_variables = length(mf0);
ReducedForm.steadystate = dr.ys(dr.order_var(restrict_variables_idx));
ReducedForm.constant = ReducedForm.steadystate + .5*dr.ghs2(restrict_variables_idx);
ReducedForm.state_variables_steady_state = dr.ys(dr.order_var(state_variables_idx));
ReducedForm.Q = Q;
ReducedForm.H = H;
ReducedForm.mf0 = mf0;
ReducedForm.mf1 = mf1;
if options_.order>3
ReducedForm.use_k_order_solver = true;
ReducedForm.dr = dr;
ReducedForm.udr = folded_to_unfolded_dr(dr, M_, options_);
if pruning
error('Pruning is not available for orders > 3');
end
else
ReducedForm.use_k_order_solver = false;
ReducedForm.ghx = dr.ghx(restrict_variables_idx,:);
ReducedForm.ghu = dr.ghu(restrict_variables_idx,:);
ReducedForm.ghxx = dr.ghxx(restrict_variables_idx,:);
ReducedForm.ghuu = dr.ghuu(restrict_variables_idx,:);
ReducedForm.ghxu = dr.ghxu(restrict_variables_idx,:);
ReducedForm.ghs2 = dr.ghs2(restrict_variables_idx,:);
if options_.order==3
ReducedForm.ghxxx = dr.ghxxx(restrict_variables_idx,:);
ReducedForm.ghuuu = dr.ghuuu(restrict_variables_idx,:);
ReducedForm.ghxxu = dr.ghxxu(restrict_variables_idx,:);
ReducedForm.ghxuu = dr.ghxuu(restrict_variables_idx,:);
ReducedForm.ghxss = dr.ghxss(restrict_variables_idx,:);
ReducedForm.ghuss = dr.ghuss(restrict_variables_idx,:);
end
end
% Set initial condition.
switch options_.particle.initialization
case 1% Initial state vector covariance is the ergodic variance associated to the first order Taylor-approximation of the model.
StateVectorMean = ReducedForm.constant(mf0);
[A,B] = kalman_transition_matrix(dr,dr.restrict_var_list,dr.restrict_columns);
StateVectorVariance = lyapunov_symm(A, B*Q*B', options_.lyapunov_fixed_point_tol, ...
options_.qz_criterium, options_.lyapunov_complex_threshold, [], options_.debug);
StateVectorVariance = StateVectorVariance(mf0,mf0);
case 2% Initial state vector covariance is a monte-carlo based estimate of the ergodic variance (consistent with a k-order Taylor-approximation of the model).
StateVectorMean = ReducedForm.constant(mf0);
old_DynareOptionsperiods = options_.periods;
options_.periods = 5000;
old_DynareOptionspruning = options_.pruning;
options_.pruning = options_.particle.pruning;
y_ = simult(endo_steady_state, dr,M_,options_);
y_ = y_(dr.order_var(state_variables_idx),2001:5000); %state_variables_idx is in dr-order while simult_ is in declaration order
if any(any(isnan(y_))) || any(any(isinf(y_))) && ~ options_.pruning
fval = Inf;
info(1) = 202;
info(4) = 0.1;
exit_flag = 0;
return;
end
StateVectorVariance = cov(y_');
options_.periods = old_DynareOptionsperiods;
options_.pruning = old_DynareOptionspruning;
clear('old_DynareOptionsperiods','y_');
case 3% Initial state vector covariance is a diagonal matrix (to be used
% if model has stochastic trends).
StateVectorMean = ReducedForm.constant(mf0);
StateVectorVariance = options_.particle.initial_state_prior_std*eye(number_of_state_variables);
otherwise
error('Unknown initialization option!')
end
ReducedForm.StateVectorMean = StateVectorMean;
ReducedForm.StateVectorVariance = StateVectorVariance;
[~, flag] = chol(ReducedForm.StateVectorVariance);%reduced_rank_cholesky(ReducedForm.StateVectorVariance)';
if flag
fval = Inf;
info(1) = 201;
info(4) = 0.1;
exit_flag = 0;
return;
end
%------------------------------------------------------------------------------
% 4. Likelihood evaluation
%------------------------------------------------------------------------------
options_.warning_for_steadystate = 0;
[s1,s2] = get_dynare_random_generator_state();
LIK = feval(options_.particle.algorithm, ReducedForm, Y, start, options_.particle, options_.threads, options_, M_);
set_dynare_random_generator_state(s1,s2);
if imag(LIK)
fval = Inf;
info(1) = 46;
info(4) = 0.1;
exit_flag = 0;
return
elseif isnan(LIK)
fval = Inf;
info(1) = 45;
info(4) = 0.1;
exit_flag = 0;
return
else
likelihood = LIK;
end
options_.warning_for_steadystate = 1;
% ------------------------------------------------------------------------------
% Adds prior if necessary
% ------------------------------------------------------------------------------
lnprior = priordens(xparam1(:),bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7,bayestopt_.p3,bayestopt_.p4);
fval = (likelihood-lnprior);
if isnan(fval)
fval = Inf;
info(1) = 47;
info(4) = 0.1;
exit_flag = 0;
return
end
if ~isreal(fval)
fval = Inf;
info(1) = 48;
info(4) = 0.1;
exit_flag = 0;
return
end
if isinf(LIK)
fval = Inf;
info(1) = 50;
info(4) = 0.1;
exit_flag = 0;
return
end
|