1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
function pdraw = prior_draw(bayestopt_, prior_trunc, uniform)
% pdraw = prior_draw(bayestopt_, prior_trunc, uniform)
% This function generate one draw from the joint prior distribution and
% allows sampling uniformly from the prior support (uniform==1 when called with init==1)
%
% INPUTS
% o init [integer] scalar equal to:
% 1: first call to set up persistent variables
% describing the prior
% 0: subsequent call to get prior
% draw
% o uniform [integer] scalar used in initialization (init=1), equal to:
% 1: sample uniformly from prior
% support (overwrites prior shape used for sampling within this function)
% 0: sample from joint prior distribution
%
% OUTPUTS
% o pdraw [double] 1*npar vector, draws from the joint prior density.
%
%
% SPECIAL REQUIREMENTS
% none
%
% NOTE 1. Input arguments 1 and 2 are only needed for initialization.
% NOTE 2. A given draw from the joint prior distribution does not satisfy BK conditions a priori.
%
% Copyright © 2006-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
persistent p6 p7 p3 p4 lb ub
persistent uniform_index gaussian_index gamma_index beta_index inverse_gamma_1_index inverse_gamma_2_index weibull_index
persistent uniform_draws gaussian_draws gamma_draws beta_draws inverse_gamma_1_draws inverse_gamma_2_draws weibull_draws
if nargin>0
p6 = bayestopt_.p6;
p7 = bayestopt_.p7;
p3 = bayestopt_.p3;
p4 = bayestopt_.p4;
bounds = prior_bounds(bayestopt_, prior_trunc);
lb = bounds.lb;
ub = bounds.ub;
number_of_estimated_parameters = length(p6);
if nargin>2 && uniform
prior_shape = repmat(5,number_of_estimated_parameters,1);
else
prior_shape = bayestopt_.pshape;
end
beta_index = find(prior_shape==1);
if isempty(beta_index)
beta_draws = false;
else
beta_draws = true;
end
gamma_index = find(prior_shape==2);
if isempty(gamma_index)
gamma_draws = false;
else
gamma_draws = true;
end
gaussian_index = find(prior_shape==3);
if isempty(gaussian_index)
gaussian_draws = false;
else
gaussian_draws = true;
end
inverse_gamma_1_index = find(prior_shape==4);
if isempty(inverse_gamma_1_index)
inverse_gamma_1_draws = false;
else
inverse_gamma_1_draws = true;
end
uniform_index = find(prior_shape==5);
if isempty(uniform_index)
uniform_draws = false;
else
uniform_draws = true;
end
inverse_gamma_2_index = find(prior_shape==6);
if isempty(inverse_gamma_2_index)
inverse_gamma_2_draws = false;
else
inverse_gamma_2_draws = true;
end
weibull_index = find(prior_shape==8);
if isempty(weibull_index)
weibull_draws = false;
else
weibull_draws = true;
end
pdraw = NaN(number_of_estimated_parameters,1);
return
end
if uniform_draws
pdraw(uniform_index) = rand(length(uniform_index),1).*(p4(uniform_index)-p3(uniform_index)) + p3(uniform_index);
out_of_bound = find( (pdraw(uniform_index)'>ub(uniform_index)) | (pdraw(uniform_index)'<lb(uniform_index)));
while ~isempty(out_of_bound)
pdraw(uniform_index) = rand(length(uniform_index),1).*(p4(uniform_index)-p3(uniform_index)) + p3(uniform_index);
out_of_bound = find( (pdraw(uniform_index)'>ub(uniform_index)) | (pdraw(uniform_index)'<lb(uniform_index)));
end
end
if gaussian_draws
pdraw(gaussian_index) = randn(length(gaussian_index),1).*p7(gaussian_index) + p6(gaussian_index);
out_of_bound = find( (pdraw(gaussian_index)'>ub(gaussian_index)) | (pdraw(gaussian_index)'<lb(gaussian_index)));
while ~isempty(out_of_bound)
pdraw(gaussian_index(out_of_bound)) = randn(length(gaussian_index(out_of_bound)),1).*p7(gaussian_index(out_of_bound)) + p6(gaussian_index(out_of_bound));
out_of_bound = find( (pdraw(gaussian_index)'>ub(gaussian_index)) | (pdraw(gaussian_index)'<lb(gaussian_index)));
end
end
if gamma_draws
pdraw(gamma_index) = gamrnd(p6(gamma_index),p7(gamma_index))+p3(gamma_index);
out_of_bound = find( (pdraw(gamma_index)'>ub(gamma_index)) | (pdraw(gamma_index)'<lb(gamma_index)));
while ~isempty(out_of_bound)
pdraw(gamma_index(out_of_bound)) = gamrnd(p6(gamma_index(out_of_bound)),p7(gamma_index(out_of_bound)))+p3(gamma_index(out_of_bound));
out_of_bound = find( (pdraw(gamma_index)'>ub(gamma_index)) | (pdraw(gamma_index)'<lb(gamma_index)));
end
end
if beta_draws
pdraw(beta_index) = (p4(beta_index)-p3(beta_index)).*betarnd(p6(beta_index),p7(beta_index))+p3(beta_index);
out_of_bound = find( (pdraw(beta_index)'>ub(beta_index)) | (pdraw(beta_index)'<lb(beta_index)));
while ~isempty(out_of_bound)
pdraw(beta_index(out_of_bound)) = (p4(beta_index(out_of_bound))-p3(beta_index(out_of_bound))).*betarnd(p6(beta_index(out_of_bound)),p7(beta_index(out_of_bound)))+p3(beta_index(out_of_bound));
out_of_bound = find( (pdraw(beta_index)'>ub(beta_index)) | (pdraw(beta_index)'<lb(beta_index)));
end
end
if inverse_gamma_1_draws
pdraw(inverse_gamma_1_index) = ...
sqrt(1./gamrnd(p7(inverse_gamma_1_index)/2,2./p6(inverse_gamma_1_index)))+p3(inverse_gamma_1_index);
out_of_bound = find( (pdraw(inverse_gamma_1_index)'>ub(inverse_gamma_1_index)) | (pdraw(inverse_gamma_1_index)'<lb(inverse_gamma_1_index)));
while ~isempty(out_of_bound)
pdraw(inverse_gamma_1_index(out_of_bound)) = ...
sqrt(1./gamrnd(p7(inverse_gamma_1_index(out_of_bound))/2,2./p6(inverse_gamma_1_index(out_of_bound))))+p3(inverse_gamma_1_index(out_of_bound));
out_of_bound = find( (pdraw(inverse_gamma_1_index)'>ub(inverse_gamma_1_index)) | (pdraw(inverse_gamma_1_index)'<lb(inverse_gamma_1_index)));
end
end
if inverse_gamma_2_draws
pdraw(inverse_gamma_2_index) = ...
1./gamrnd(p7(inverse_gamma_2_index)/2,2./p6(inverse_gamma_2_index))+p3(inverse_gamma_2_index);
out_of_bound = find( (pdraw(inverse_gamma_2_index)'>ub(inverse_gamma_2_index)) | (pdraw(inverse_gamma_2_index)'<lb(inverse_gamma_2_index)));
while ~isempty(out_of_bound)
pdraw(inverse_gamma_2_index(out_of_bound)) = ...
1./gamrnd(p7(inverse_gamma_2_index(out_of_bound))/2,2./p6(inverse_gamma_2_index(out_of_bound)))+p3(inverse_gamma_2_index(out_of_bound));
out_of_bound = find( (pdraw(inverse_gamma_2_index)'>ub(inverse_gamma_2_index)) | (pdraw(inverse_gamma_2_index)'<lb(inverse_gamma_2_index)));
end
end
if weibull_draws
pdraw(weibull_index) = wblrnd(p7(weibull_index), p6(weibull_index)) + p3(weibull_index);
out_of_bound = find( (pdraw(weibull_index)'>ub(weibull_index)) | (pdraw(weibull_index)'<lb(weibull_index)));
while ~isempty(out_of_bound)
pdraw(weibull_index(out_of_bound)) = wblrnd(p7(weibull_index(out_of_bound)),p6(weibull_index(out_of_bound)))+p3(weibull_index(out_of_bound));
out_of_bound = find( (pdraw(weibull_index)'>ub(weibull_index)) | (pdraw(weibull_index)'<lb(weibull_index)));
end
end
return % --*-- Unit tests --*--
%@test:1
% Fill global structures with required fields...
prior_trunc = 1e-10;
p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
p1 = .4*ones(14,1); % Prior mean
p2 = .2*ones(14,1); % Prior std.
p3 = NaN(14,1);
p4 = NaN(14,1);
p5 = NaN(14,1);
p6 = NaN(14,1);
p7 = NaN(14,1);
for i=1:14
switch p0(i)
case 1
% Beta distribution
p3(i) = 0;
p4(i) = 1;
[p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
case 2
% Gamma distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
case 3
% Normal distribution
p3(i) = -Inf;
p4(i) = Inf;
p6(i) = p1(i);
p7(i) = p2(i);
p5(i) = p1(i);
case 4
% Inverse Gamma (type I) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
case 5
% Uniform distribution
[p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
p3(i) = p6(i);
p4(i) = p7(i);
p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
case 6
% Inverse Gamma (type II) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
case 8
% Weibull distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
otherwise
error('This density is not implemented!')
end
end
bayestopt_.pshape = p0;
bayestopt_.p1 = p1;
bayestopt_.p2 = p2;
bayestopt_.p3 = p3;
bayestopt_.p4 = p4;
bayestopt_.p5 = p5;
bayestopt_.p6 = p6;
bayestopt_.p7 = p7;
ndraws = 1e5;
m0 = bayestopt_.p1; %zeros(14,1);
v0 = diag(bayestopt_.p2.^2); %zeros(14);
% Call the tested routine
try
% Initialization of prior_draws.
prior_draw(bayestopt_, prior_trunc, false);
% Do simulations in a loop and estimate recursively the mean and teh variance.
for i = 1:ndraws
draw = transpose(prior_draw());
m1 = m0 + (draw-m0)/i;
m2 = m1*m1';
v0 = v0 + ((draw*draw'-m2-v0) + (i-1)*(m0*m0'-m2'))/i;
m0 = m1;
end
t(1) = true;
catch
t(1) = false;
end
if t(1)
t(2) = all(abs(m0-bayestopt_.p1)<3e-3);
t(3) = all(all(abs(v0-diag(bayestopt_.p2.^2))<5e-3));
end
T = all(t);
%@eof:1
|