File: prior_posterior_statistics.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (393 lines) | stat: -rw-r--r-- 15,159 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
function oo_=prior_posterior_statistics(type,dataset_,dataset_info,M_,oo_,options_,estim_params_,bayestopt_,dispString)
% oo_=prior_posterior_statistics(type,dataset_,dataset_info,M_,oo_,options_,estim_params_,bayestopt_,dispString))
% Computes Monte Carlo filter smoother and forecasts
%
% INPUTS
%    type           [string]        posterior, prior, or gsa
%   o dataset_      [structure]     storing the dataset
%   o dataset_info  [structure]     Various information about the dataset
%   o M_            [structure]     storing the model information
%   o oo_           [structure]     storing the results
%   o options_      [structure]     storing the options
%   o estim_params_ [structure]     storing information about estimated parameters
%   o bayestopt_    [structure]     storing information about priors
%    dispString:   	[string] 		display info in the command window
% OUTPUTS
%    oo_:           [structure]     storing the results
%
% SPECIAL REQUIREMENTS
%    none
%
% PARALLEL CONTEXT
% See the comments in the posterior_sampler.m funtion.


% Copyright © 2005-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

if nargin < 9
    dispString = 'prior_posterior_statistics';
end
localVars=[];

Y = transpose(dataset_.data);
gend = dataset_.nobs;

nvn  = estim_params_.nvn;
npar = estim_params_.nvx+nvn+estim_params_.ncx+estim_params_.ncn+estim_params_.np;
naK = length(options_.filter_step_ahead);

MaxNumberOfBytes=options_.MaxNumberOfBytes;
endo_nbr=M_.endo_nbr;
exo_nbr=M_.exo_nbr;
meas_err_nbr=length(M_.Correlation_matrix_ME);
horizon = options_.forecast;
if horizon
    i_last_obs = gend+(1-M_.maximum_endo_lag:0);
end
maxlag = M_.maximum_endo_lag;

if strcmpi(type,'posterior')
    DirectoryName = CheckPath('metropolis',M_.dname);
    B = options_.sub_draws;
elseif strcmpi(type,'gsa')
    RootDirectoryName = CheckPath('gsa',M_.dname);
    if options_.opt_gsa.pprior
        DirectoryName = CheckPath(['gsa',filesep,'prior'],M_.dname);
        load([ RootDirectoryName filesep  M_.fname '_prior.mat'],'lpmat0','lpmat','istable')
    else
        DirectoryName = CheckPath(['gsa',filesep,'mc'],M_.dname);
        load([ RootDirectoryName filesep  M_.fname '_mc.mat'],'lpmat0','lpmat','istable')
    end
    if ~isempty(lpmat0)
        x=[lpmat0(istable,:) lpmat(istable,:)];
    else
        x=lpmat(istable,:);
    end
    clear lpmat lpmat0 istable
    B = size(x,1);
elseif strcmpi(type,'prior')
    DirectoryName = CheckPath('prior',M_.dname);
    B = options_.prior_draws;
end

MAX_nruns = min(B,ceil(MaxNumberOfBytes/(npar+2)/8));
MAX_nsmoo = min(B,ceil(MaxNumberOfBytes/((endo_nbr)*gend)/8));
MAX_n_smoothed_constant = min(B,ceil(MaxNumberOfBytes/((endo_nbr)*gend)/8));
MAX_n_smoothed_trend = min(B,ceil(MaxNumberOfBytes/((endo_nbr)*gend)/8));
MAX_n_trend_coeff = min(B,ceil(MaxNumberOfBytes/endo_nbr/8));
MAX_ninno = min(B,ceil(MaxNumberOfBytes/(exo_nbr*gend)/8));
MAX_nerro = min(B,ceil(MaxNumberOfBytes/(size(options_.varobs,1)*gend)/8));

if naK
    MAX_naK   = min(B,ceil(MaxNumberOfBytes/(endo_nbr* ...
                                             length(options_.filter_step_ahead)*(gend+max(options_.filter_step_ahead)))/8));
end

if horizon
    MAX_nforc1 = min(B,ceil(MaxNumberOfBytes/((endo_nbr)*(horizon+maxlag))/8));
    MAX_nforc2 = min(B,ceil(MaxNumberOfBytes/((endo_nbr)*(horizon+maxlag))/8));
    if ~isequal(M_.H,0)
        MAX_nforc_ME = min(B,ceil(MaxNumberOfBytes/((size(options_.varobs,1))*(horizon+maxlag))/8));
    end
end
MAX_momentsno = min(B,ceil(MaxNumberOfBytes/(get_moments_size(options_)*8)));

if options_.filter_covariance
    MAX_filter_covariance = min(B,ceil(MaxNumberOfBytes/(endo_nbr^2*(gend+1))/8));
end

if options_.smoothed_state_uncertainty
    MAX_n_smoothed_state_uncertainty = min(B,ceil(MaxNumberOfBytes/((endo_nbr*endo_nbr)*gend)/8));
end

varlist = options_.varlist;
if isempty(varlist)
    varlist = sort(M_.endo_names(1:M_.orig_endo_nbr));
end

n_variables_to_fill=13;

irun = ones(n_variables_to_fill,1);
ifil = zeros(n_variables_to_fill,1);

run_smoother = 0;
if options_.smoother || options_.forecast || ~isempty(options_.filter_step_ahead) || options_.smoothed_state_uncertainty
    run_smoother = 1;
    if options_.loglinear
        oo_.Smoother.loglinear = true;
    else
        oo_.Smoother.loglinear = false;
    end
end

filter_covariance=0;
if options_.filter_covariance
    filter_covariance=1;
end

smoothed_state_uncertainty=0;
if options_.smoothed_state_uncertainty
    smoothed_state_uncertainty=1;
end

% Store the variable mandatory for local/remote parallel computing.

localVars.type=type;
localVars.run_smoother=run_smoother;
localVars.filter_covariance=filter_covariance;
localVars.smoothed_state_uncertainty=smoothed_state_uncertainty;
localVars.gend=gend;
localVars.Y=Y;
localVars.data_index=dataset_info.missing.aindex;
localVars.missing_value=dataset_info.missing.state;
localVars.varobs=options_.varobs;
localVars.mean_varobs=dataset_info.descriptive.mean;
localVars.irun=irun;
localVars.endo_nbr=endo_nbr;
localVars.nvn=nvn;
localVars.naK=naK;
localVars.horizon=horizon;
localVars.iendo=1:endo_nbr;
localVars.IdObs=bayestopt_.mfys;
if horizon
    localVars.i_last_obs=i_last_obs;
    localVars.MAX_nforc1=MAX_nforc1;
    localVars.MAX_nforc2=MAX_nforc2;
    if ~isequal(M_.H,0)
        localVars.MAX_nforc_ME = MAX_nforc_ME;
    end
end
localVars.exo_nbr=exo_nbr;
localVars.maxlag=maxlag;
localVars.MAX_nsmoo=MAX_nsmoo;
localVars.MAX_ninno=MAX_ninno;
localVars.MAX_nerro = MAX_nerro;
if naK
    localVars.MAX_naK=MAX_naK;
end
if options_.filter_covariance
    localVars.MAX_filter_covariance = MAX_filter_covariance;
end
if options_.smoothed_state_uncertainty
    localVars.MAX_n_smoothed_state_uncertainty = MAX_n_smoothed_state_uncertainty ;
end
localVars.MAX_n_smoothed_constant=MAX_n_smoothed_constant;
localVars.MAX_n_smoothed_trend=MAX_n_smoothed_trend;
localVars.MAX_n_trend_coeff=MAX_n_trend_coeff;
localVars.MAX_nruns=MAX_nruns;
localVars.MAX_momentsno = MAX_momentsno;
localVars.ifil=ifil;
localVars.DirectoryName = DirectoryName;

localVars.M_=M_;
localVars.oo_=oo_;
localVars.options_=options_;
localVars.estim_params_=estim_params_;
localVars.bayestopt_=bayestopt_;


if strcmpi(type,'posterior')
    record=load_last_mh_history_file(DirectoryName, M_.fname);
    [nblck, npar] = size(record.LastParameters);
    FirstMhFile = record.KeepedDraws.FirstMhFile;
    FirstLine = record.KeepedDraws.FirstLine;
    TotalNumberOfMhFiles = sum(record.MhDraws(:,2));
    TotalNumberOfMhDraws = sum(record.MhDraws(:,1));
    NumberOfDraws = TotalNumberOfMhDraws-floor(options_.mh_drop*TotalNumberOfMhDraws);
    mh_nblck = options_.mh_nblck;
    if B==NumberOfDraws*mh_nblck
        % we load all retained MH runs !
        logpost=GetAllPosteriorDraws(options_, M_.dname, M_.fname, 0, FirstMhFile, FirstLine, TotalNumberOfMhFiles, NumberOfDraws, nblck);
        for column=1:npar
            x(:,column) = GetAllPosteriorDraws(options_, M_.dname, M_.fname, column, FirstMhFile, FirstLine, TotalNumberOfMhFiles, NumberOfDraws, nblck);
        end
    else
        logpost=NaN(B,1);
        for b=1:B
            [x(b,:), logpost(b)] = GetOneDraw(type,M_,estim_params_,oo_,options_,bayestopt_);
        end
    end
    localVars.logpost=logpost;
end

if ~strcmpi(type,'prior')
    localVars.x=x;
end

% Like sequential execution!
if isnumeric(options_.parallel)
    [fout] = prior_posterior_statistics_core(localVars,1,B,0);
    % Parallel execution!
else
    [~, totCPU, nBlockPerCPU] = distributeJobs(options_.parallel, 1, B);
    ifil=zeros(n_variables_to_fill,totCPU);
    for j=1:totCPU-1
        if run_smoother
            nfiles = ceil(nBlockPerCPU(j)/MAX_nsmoo);
            ifil(1,j+1) =ifil(1,j)+nfiles;
            nfiles = ceil(nBlockPerCPU(j)/MAX_ninno);
            ifil(2,j+1) =ifil(2,j)+nfiles;
            nfiles = ceil(nBlockPerCPU(j)/MAX_nerro);
            ifil(3,j+1) =ifil(3,j)+nfiles;
        end
        if naK
            nfiles = ceil(nBlockPerCPU(j)/MAX_naK);
            ifil(4,j+1) =ifil(4,j)+nfiles;
        end
        nfiles = ceil(nBlockPerCPU(j)/MAX_nruns);
        ifil(5,j+1) =ifil(5,j)+nfiles;
        if horizon
            nfiles = ceil(nBlockPerCPU(j)/MAX_nforc1);
            ifil(6,j+1) =ifil(6,j)+nfiles;
            nfiles = ceil(nBlockPerCPU(j)/MAX_nforc2);
            ifil(7,j+1) =ifil(7,j)+nfiles;
            if ~isequal(M_.H,0)
                nfiles = ceil(nBlockPerCPU(j)/MAX_nforc_ME);
                ifil(12,j+1) =ifil(12,j)+nfiles;
            end
        end
        if options_.filter_covariance
            nfiles = ceil(nBlockPerCPU(j)/MAX_filter_covariance);
            ifil(8,j+1) =ifil(8,j)+nfiles;
        end
        if run_smoother
            nfiles = ceil(nBlockPerCPU(j)/MAX_n_trend_coeff);
            ifil(9,j+1) =ifil(9,j)+nfiles;
            nfiles = ceil(nBlockPerCPU(j)/MAX_n_smoothed_constant);
            ifil(10,j+1) =ifil(10,j)+nfiles;
            nfiles = ceil(nBlockPerCPU(j)/MAX_n_smoothed_trend);
            ifil(11,j+1) =ifil(11,j)+nfiles;
            if smoothed_state_uncertainty
                nfiles = ceil(nBlockPerCPU(j)/MAX_n_smoothed_state_uncertainty);
                ifil(13,j+1) =ifil(13,j)+nfiles;
            end
        end
    end
    localVars.ifil = ifil;
    globalVars = [];
    % which files have to be copied to run remotely
    NamFileInput(1,:) = {'',[M_.fname '.static.m']};
    NamFileInput(2,:) = {'',[M_.fname '.dynamic.m']};
    if M_.set_auxiliary_variables
        NamFileInput(3,:) = {'',[M_.fname '.set_auxiliary_variables.m']};
    end
    if options_.steadystate_flag
        if options_.steadystate_flag == 1
            NamFileInput(length(NamFileInput)+1,:)={'',[M_.fname '_steadystate.m']};
        else
            NamFileInput(length(NamFileInput)+1,:)={'',[M_.fname '.steadystate.m']};
        end
    end
    [fout] = masterParallel(options_.parallel, 1, B,NamFileInput,'prior_posterior_statistics_core', localVars,globalVars, options_.parallel_info);

end
ifil = fout(end).ifil;

stock_gend=gend;
stock_data=Y;
save([DirectoryName '/' M_.fname '_data.mat'],'stock_gend','stock_data');

if strcmpi(type,'gsa')
    return
end

if ~isnumeric(options_.parallel)
    leaveSlaveOpen = options_.parallel_info.leaveSlaveOpen;
    if options_.parallel_info.leaveSlaveOpen == 0
        % Commenting for testing!!!
        options_.parallel_info.leaveSlaveOpen = 1; % Force locally to leave open remote matlab sessions (repeated pm3 calls)
    end
end

if options_.smoother
    oo_=pm3(M_,options_,oo_,endo_nbr,gend,ifil(1),B,'Smoothed variables',...
        varlist, M_.endo_names_tex,M_.endo_names,...
        varlist,'SmoothedVariables',DirectoryName,'_smooth',dispString);
    oo_=pm3(M_,options_,oo_,exo_nbr,gend,ifil(2),B,'Smoothed shocks',...
        M_.exo_names,M_.exo_names_tex,M_.exo_names,...
        M_.exo_names,'SmoothedShocks',DirectoryName,'_inno',dispString);
    oo_=pm3(M_,options_,oo_,endo_nbr,1,ifil(9),B,'Trend_coefficients',...
        varlist,M_.endo_names_tex,M_.endo_names,...
        varlist,'TrendCoeff',DirectoryName,'_trend_coeff',dispString);
    oo_=pm3(M_,options_,oo_,endo_nbr,gend,ifil(10),B,'Smoothed constant',...
        varlist,M_.endo_names_tex,M_.endo_names,...
        varlist,'Constant',DirectoryName,'_smoothed_constant',dispString);
    oo_=pm3(M_,options_,oo_,endo_nbr,gend,ifil(11),B,'Smoothed trend',...
        varlist,M_.endo_names_tex,M_.endo_names,...
        varlist,'Trend',DirectoryName,'_smoothed_trend',dispString);
    oo_=pm3(M_,options_,oo_,endo_nbr,gend,ifil(1),B,'Updated Variables',...
        varlist,M_.endo_names_tex,M_.endo_names,...
        varlist,'UpdatedVariables',DirectoryName, ...
        '_update',dispString);
    if smoothed_state_uncertainty
        oo_=pm3(M_,options_,oo_,endo_nbr,endo_nbr,ifil(13),B,'State Uncertainty',...
            varlist,M_.endo_names_tex,M_.endo_names,...
            varlist,'StateUncertainty',DirectoryName,'_state_uncert',dispString);
    end

    if nvn
        for obs_iter=1:length(options_.varobs)
            meas_error_names{obs_iter,1}=['SE_EOBS_' M_.endo_names{strmatch(options_.varobs{obs_iter},M_.endo_names,'exact')}];
            texnames{obs_iter,1}=['\sigma^{ME}_' M_.endo_names_tex{strmatch(options_.varobs{obs_iter},M_.endo_names,'exact')}];
        end
        oo_=pm3(M_,options_,oo_,meas_err_nbr,gend,ifil(3),B,'Smoothed measurement errors',...
            meas_error_names,texnames,meas_error_names,...
            meas_error_names,'SmoothedMeasurementErrors',DirectoryName,'_error',dispString);
    end
end

if options_.filtered_vars
    oo_=pm3(M_,options_,oo_,endo_nbr,gend,ifil(4),B,'One step ahead forecast (filtered variables)',...
        varlist,M_.endo_names_tex,M_.endo_names,...
        varlist,'FilteredVariables',DirectoryName,'_filter_step_ahead',dispString);
end

if options_.forecast
    oo_=pm3(M_,options_,oo_,endo_nbr,horizon,ifil(6),B,'Forecasted variables (mean)',...
        varlist,M_.endo_names_tex,M_.endo_names,...
        varlist,'MeanForecast',DirectoryName,'_forc_mean',dispString);
    oo_=pm3(M_,options_,oo_,endo_nbr,horizon,ifil(7),B,'Forecasted variables (point)',...
        varlist,M_.endo_names_tex,M_.endo_names,...
        varlist,'PointForecast',DirectoryName,'_forc_point',dispString);
    if ~isequal(M_.H,0) && ~isempty(intersect(options_.varobs,varlist))
        texnames = cell(length(options_.varobs), 1);
        obs_names = cell(length(options_.varobs), 1);
        for obs_iter=1:length(options_.varobs)
            obs_names{obs_iter}=M_.endo_names{strmatch(options_.varobs{obs_iter},M_.endo_names,'exact')};
            texnames{obs_iter}=M_.endo_names_tex{strmatch(options_.varobs{obs_iter},M_.endo_names,'exact')};
        end
        varlist_forecast_ME=intersect(options_.varobs,varlist);
        oo_=pm3(M_,options_,oo_,meas_err_nbr,horizon,ifil(12),B,'Forecasted variables (point) with ME',...
            varlist_forecast_ME,texnames,obs_names,...
            varlist_forecast_ME,'PointForecastME',DirectoryName,'_forc_point_ME',dispString);
    end
end

if options_.filter_covariance
    oo_=pm3(M_,options_,oo_,endo_nbr,endo_nbr,ifil(8),B,'Filtered covariances',...
        varlist,M_.endo_names_tex,M_.endo_names,...
        varlist,'FilterCovariance',DirectoryName,'_filter_covar',dispString);
end


if ~isnumeric(options_.parallel)
    options_.parallel_info.leaveSlaveOpen = leaveSlaveOpen;
    if leaveSlaveOpen == 0
        closeSlave(options_.parallel,options_.parallel_info.RemoteTmpFolder),
    end
end