File: evaluate_steady_state.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (525 lines) | stat: -rw-r--r-- 25,255 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
function [ys,params,info] = evaluate_steady_state(ys_init,exo_ss,M_,options_,steadystate_check_flag)
% function [ys,params,info] = evaluate_steady_state(ys_init,exo_ss,M_,options_,steadystate_check_flag)
% Computes the steady state
%
% INPUTS
%   ys_init                   vector           initial values used to compute the steady
%                                                 state
%   exo_ss                    vector           exogenous steady state (incl. deterministic exogenous)
%   M_                        struct           model structure
%   options_                  struct           options
%   steadystate_check_flag    boolean          if true, check that the
%                                              steadystate verifies the
%                                              static model
%
% OUTPUTS
%   ys                        vector           steady state (in declaration order)
%   params                    vector           model parameters possibly
%                                              modified by user steadystate
%                                              function
%   info                      2x1 vector       error codes
%
% SPECIAL REQUIREMENTS
%   none

% Copyright © 2001-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

if options_.solve_algo < 0 || options_.solve_algo > 14
    error('STEADY: solve_algo must be between 0 and 14')
end

if ~options_.bytecode && ~options_.block && options_.solve_algo > 4 && ...
        options_.solve_algo < 9
    error('STEADY: you can''t use solve_algo = {5,6,7,8} without block nor bytecode options_')
end

if ~options_.bytecode && options_.block && options_.solve_algo == 5
    error('STEADY: you can''t use solve_algo = 5 without bytecode option')
end

if isoctave && options_.solve_algo == 11
    error('STEADY: you can''t use solve_algo = %u under Octave',options_.solve_algo)
end

% To ensure that the z and zx matrices constructed by repmat and passed to bytecode
% are of the right size.
if size(ys_init, 2) > 1
    error('ys_init must be a column-vector')
end
if size(exo_ss, 2) > 1
    error('exo_ss must be a column-vector')
end

info = 0;
check = 0;

steadystate_flag = options_.steadystate_flag;
params = M_.params;

if length(M_.aux_vars) > 0 && ~steadystate_flag && M_.set_auxiliary_variables
    h_set_auxiliary_variables = str2func([M_.fname '.set_auxiliary_variables']);
    ys_init = h_set_auxiliary_variables(ys_init,exo_ss,params);
end

if options_.ramsey_policy
    if ~isfinite(M_.params(strmatch('optimal_policy_discount_factor',M_.param_names,'exact')))
        fprintf('\nevaluate_steady_state: the planner_discount is NaN/Inf. That will cause problems.\n')
    end
    if steadystate_flag
        % explicit steady state file
        [ys,params,info] = evaluate_steady_state_file(ys_init,exo_ss,M_, ...
                                                      options_,steadystate_check_flag);
        %test whether it solves model conditional on the instruments
        if ~options_.debug
            resids = evaluate_static_model(ys,exo_ss,params,M_,options_);
        else
            [resids, ~ , jacob]= evaluate_static_model(ys,exo_ss,params,M_,options_);
        end
        nan_indices=find(isnan(resids(M_.ramsey_orig_endo_nbr+(1:M_.ramsey_orig_eq_nbr))));

        if ~isempty(nan_indices)
            if options_.debug
                fprintf('\nevaluate_steady_state: The steady state file computation for the Ramsey problem resulted in NaNs.\n')
                fprintf('evaluate_steady_state: The steady state was computed conditional on the following initial instrument values: \n')
                for ii = 1:size(options_.instruments,1)
                    fprintf('\t %s \t %f \n',options_.instruments{ii},ys_init(strmatch(options_.instruments{ii},M_.endo_names,'exact')))
                end
                fprintf('evaluate_steady_state: The problem occured in the following equations: \n')
                fprintf('\t Equation(s): ')
                for ii=1:length(nan_indices)
                    fprintf('%d, ',nan_indices(ii));
                end
                skipline()
                fprintf('evaluate_steady_state: If those initial values are not admissable, change them using an initval-block.\n')
                skipline(2)
            end
            info(1) = 84;
            info(2) = resids'*resids;
            return
        end

        if any(imag(ys(M_.ramsey_orig_endo_nbr+(1:M_.ramsey_orig_eq_nbr))))
            if options_.debug
                fprintf('\nevaluate_steady_state: The steady state file computation for the Ramsey problem resulted in complex numbers.\n')
                fprintf('evaluate_steady_state: The steady state was computed conditional on the following initial instrument values: \n')
                for ii = 1:size(options_.instruments,1)
                    fprintf('\t %s \t %f \n',options_.instruments{ii},ys_init(strmatch(options_.instruments{ii},M_.endo_names,'exact')))
                end
                fprintf('evaluate_steady_state: If those initial values are not admissable, change them using an initval-block.\n')
                skipline(2)
            end
            info(1) = 86;
            info(2) = resids'*resids;
            return
        end

        if max(abs(resids(M_.ramsey_orig_endo_nbr+(1:M_.ramsey_orig_eq_nbr)))) > options_.solve_tolf %does it solve for all variables except for the Lagrange multipliers
            if options_.debug
                fprintf('\nevaluate_steady_state: The steady state file does not solve the steady state for the Ramsey problem.\n')
                fprintf('evaluate_steady_state: Conditional on the following instrument values: \n')
                for ii = 1:size(options_.instruments,1)
                    fprintf('\t %s \t %f \n',options_.instruments{ii},ys_init(strmatch(options_.instruments{ii},M_.endo_names,'exact')))
                end
                fprintf('evaluate_steady_state: the following equations have non-zero residuals: \n')
                for ii=M_.ramsey_orig_endo_nbr+1:M_.endo_nbr
                    if abs(resids(ii)) > options_.solve_tolf
                        fprintf('\t Equation number %d: %f\n',ii-M_.ramsey_orig_endo_nbr, resids(ii))
                    end
                end
                skipline(2)
            end
            info(1) = 85;
            info(2) = resids'*resids;
            return
        end
    end
    if options_.debug
        if steadystate_flag
            infrow=find(isinf(ys_init(1:M_.orig_endo_nbr)));
        else
            infrow=find(isinf(ys_init));
        end
        if ~isempty(infrow)
            fprintf('\nevaluate_steady_state: The initial values for the steady state of the following variables are Inf:\n');
            for iter=1:length(infrow)
                fprintf('%s\n',M_.endo_names{infrow(iter)});
            end
        end
        if steadystate_flag
            nanrow=find(isnan(ys_init(1:M_.orig_endo_nbr)));
        else
            nanrow=find(isnan(ys_init));
        end
        if ~isempty(nanrow)
            fprintf('\nevaluate_steady_state: The initial values for the steady state of the following variables are NaN:\n');
            for iter=1:length(nanrow)
                fprintf('%s\n',M_.endo_names{nanrow(iter)});
            end
        end
        if steadystate_flag
            nan_indices_mult=find(isnan(resids(1:M_.ramsey_orig_endo_nbr)));
            if any(nan_indices_mult)
                fprintf('evaluate_steady_state: The steady state results NaN for auxiliary equation %u.\n',nan_indices_mult);
                fprintf('evaluate_steady_state: This is often a sign of problems.\n');
            end
            [infrow,infcol]=find(isinf(jacob));
            
            if ~isempty(infrow)
                fprintf('\nevaluate_steady_state: The Jacobian of the dynamic model contains Inf. The problem is associated with:\n\n')
                display_problematic_vars_Jacobian(infrow,infcol,M_,ys,'static','evaluate_steady_state: ')
            end
            
            if ~isreal(jacob)
                [imagrow,imagcol]=find(abs(imag(jacob))>1e-15);
                fprintf('\nevaluate_steady_state: The Jacobian of the dynamic model contains imaginary parts. The problem arises from: \n\n')
                display_problematic_vars_Jacobian(imagrow,imagcol,M_,ys,'static','evaluate_steady_state: ')
            end
            
            [nanrow,nancol]=find(isnan(jacob));
            if ~isempty(nanrow)
                fprintf('\nevaluate_steady_state: The Jacobian of the dynamic model contains NaN. The problem is associated with:\n\n')
                display_problematic_vars_Jacobian(nanrow,nancol,M_,ys,'static','evaluate_steady_state: ')
            end
            
        end

    end
    %either if no steady state file or steady state file without problems
    [ys,params,info] = dyn_ramsey_static(ys_init,exo_ss,M_,options_);
    if info
        return
    end
    %check whether steady state really solves the model
    resids = evaluate_static_model(ys,exo_ss,params,M_,options_);

    nan_indices_multiplier=find(isnan(resids(1:M_.ramsey_orig_endo_nbr)));
    nan_indices=find(isnan(resids(M_.ramsey_orig_endo_nbr+1:end)));

    if ~isempty(nan_indices)
        if options_.debug
            fprintf('\nevaluate_steady_state: The steady state computation for the Ramsey problem resulted in NaNs.\n')
            fprintf('evaluate_steady_state: The steady state computation resulted in the following instrument values: \n')
            for i = 1:size(options_.instruments,1)
                fprintf('\t %s \t %f \n',options_.instruments{i},ys(strmatch(options_.instruments{i},M_.endo_names,'exact')))
            end
            fprintf('evaluate_steady_state: The problem occured in the following equations: \n')
            fprintf('\t Equation(s): ')
            for ii=1:length(nan_indices)
                fprintf('%d, ',nan_indices(ii));
            end
            skipline()
        end
        info(1) = 82;
        return
    end

    if ~isempty(nan_indices_multiplier)
        if options_.debug
            fprintf('\nevaluate_steady_state: The steady state computation for the Ramsey problem resulted in NaNs in the auxiliary equations.\n')
            fprintf('evaluate_steady_state: The steady state computation resulted in the following instrument values: \n')
            for i = 1:size(options_.instruments,1)
                fprintf('\t %s \t %f \n',options_.instruments{i},ys(strmatch(options_.instruments{i},M_.endo_names,'exact')))
            end
            fprintf('evaluate_steady_state: The problem occured in the following equations: \n')
            fprintf('\t Auxiliary equation(s): ')
            for ii=1:length(nan_indices_multiplier)
                fprintf('%d, ',nan_indices_multiplier(ii));
            end
            skipline()
        end
        info(1) = 83;
        return
    end

    if max(abs(resids)) > options_.solve_tolf %does it solve for all variables including the auxiliary ones
        if options_.debug
            fprintf('\nevaluate_steady_state: The steady state for the Ramsey problem could not be computed.\n')
            fprintf('evaluate_steady_state: The steady state computation stopped with the following instrument values:: \n')
            for i = 1:size(options_.instruments,1)
                fprintf('\t %s \t %f \n',options_.instruments{i},ys(strmatch(options_.instruments{i},M_.endo_names,'exact')))
            end
            fprintf('evaluate_steady_state: The following equations have non-zero residuals: \n')
            for ii=1:M_.ramsey_orig_endo_nbr
                if abs(resids(ii)) > options_.solve_tolf/100
                    fprintf('\t Auxiliary Ramsey equation number %d: %f\n',ii, resids(ii))
                end
            end
            for ii=M_.ramsey_orig_endo_nbr+1:M_.endo_nbr
                if abs(resids(ii)) > options_.solve_tolf/100
                    fprintf('\t Equation number %d: %f\n',ii-M_.ramsey_orig_endo_nbr, resids(ii))
                end
            end
            skipline(2)
        end
        info(1) = 81;
        info(2) = resids'*resids;
        return
    end
elseif steadystate_flag
    % explicit steady state file
    [ys,params,info] = evaluate_steady_state_file(ys_init,exo_ss,M_, options_,steadystate_check_flag);
    if size(ys,2)>size(ys,1)
        error('STEADY: steady_state-file must return a column vector, not a row vector.')
    end
    if info(1)
        return
    end
elseif ~options_.bytecode && ~options_.block
    static_resid = str2func(sprintf('%s.sparse.static_resid', M_.fname));
    static_g1 = str2func(sprintf('%s.sparse.static_g1', M_.fname));
    if ~options_.linear
        % non linear model
        if  ismember(options_.solve_algo,[10,11])
            [lb,ub,eq_index] = get_complementarity_conditions(M_,options_.ramsey_policy);
            if options_.solve_algo == 10
                options_.lmmcp.lb = lb;
                options_.lmmcp.ub = ub;
            elseif options_.solve_algo == 11
                options_.mcppath.lb = lb;
                options_.mcppath.ub = ub;
            end
            [ys,check,fvec, fjac, errorcode] = dynare_solve(@static_mcp_problem,...
                ys_init,...
                options_.steady.maxit, options_.solve_tolf, options_.solve_tolx, ...
                options_, exo_ss, params,...
                M_.endo_nbr, static_resid, static_g1, ...
                M_.static_g1_sparse_rowval, M_.static_g1_sparse_colval, M_.static_g1_sparse_colptr, eq_index);
        else
            [ys, check, fvec, fjac, errorcode] = dynare_solve(@static_problem, ys_init, ...
                options_.steady.maxit, options_.solve_tolf, options_.solve_tolx, ...
                options_, exo_ss, params, M_.endo_nbr, static_resid, static_g1, ...
                M_.static_g1_sparse_rowval, M_.static_g1_sparse_colval, M_.static_g1_sparse_colptr);
        end
        if check && options_.debug
            dprintf('Nonlinear solver routine returned errorcode=%i.', errorcode)
            skipline()
            [infrow,infcol]=find(isinf(fjac) | isnan(fjac));
            if ~isempty(infrow)
                fprintf('\nSTEADY:  The Jacobian at the initial values contains Inf or NaN. The problem arises from: \n')
                display_problematic_vars_Jacobian(infrow,infcol,M_,ys_init,'static','STEADY: ')
            end
            problematic_equation = find(~isfinite(fvec));
            if ~isempty(problematic_equation)
                fprintf('\nSTEADY:  numerical initial values or parameters incompatible with the following equations\n')
                disp(problematic_equation')
                fprintf('Please check for example\n')
                fprintf('   i) if all parameters occurring in these equations are defined\n')
                fprintf('  ii) that no division by an endogenous variable initialized to 0 occurs\n')
            end
        end
    else
        % linear model
        [fvec, T_order, T] = static_resid(ys_init, exo_ss, params);
        jacob = static_g1(ys_init, exo_ss, params, M_.static_g1_sparse_rowval, M_.static_g1_sparse_colval, M_.static_g1_sparse_colptr, T_order, T);

        ii = find(~isfinite(fvec));
        if ~isempty(ii)
            ys=fvec;
            check=1;
            disp(['STEADY:  numerical initial values or parameters incompatible with the following' ...
                  ' equations'])
            disp(ii')
            disp('Check whether your model is truly linear. Put "resid(1);" before "steady;" to see the problematic equations.')
        elseif isempty(ii) && max(abs(fvec)) > 1e-12
            ys = ys_init-jacob\fvec;
            resid = evaluate_static_model(ys,exo_ss,params,M_,options_);
            if max(abs(resid)) > 1e-6
                check=1;
                fprintf('STEADY: No steady state for your model could be found\n')
                fprintf('STEADY: Check whether your model is truly linear. Put "resid(1);" before "steady;" to see the problematic equations.\n')
            end
        else
            ys = ys_init;
        end
        if options_.debug
            if any(any(isinf(jacob) | isnan(jacob)))
                [infrow,infcol]=find(isinf(jacob) | isnan(jacob));
                fprintf('\nSTEADY:  The Jacobian contains Inf or NaN. The problem arises from: \n\n')
                for ii=1:length(infrow)
                    fprintf('STEADY:  Derivative of Equation %d with respect to Variable %s  (initial value of %s: %g) \n',infrow(ii),M_.endo_names{infcol(ii),:},M_.endo_names{infcol(ii),:},ys_init(infcol(ii)))
                end
                fprintf('Check whether your model is truly linear. Put "resid(1);" before "steady;" to see the problematic equations.\n')
            end
        end
    end
elseif ~options_.bytecode && options_.block
    ys = ys_init;
    T = NaN(M_.block_structure_stat.tmp_nbr, 1);
    for b = 1:length(M_.block_structure_stat.block)
        fh_static = str2func(sprintf('%s.sparse.block.static_%d', M_.fname, b));
        if M_.block_structure_stat.block(b).Simulation_Type ~= 1 && ...
                M_.block_structure_stat.block(b).Simulation_Type ~= 2
            mfs_idx = M_.block_structure_stat.block(b).variable(end-M_.block_structure_stat.block(b).mfs+1:end);
            if options_.solve_algo <= 4 || options_.solve_algo >= 9
                [ys(mfs_idx), errorflag] = dynare_solve(@block_mfs_steadystate, ys(mfs_idx), ...
                                                        options_.steady.maxit, options_.solve_tolf, options_.solve_tolx, ...
                                                        options_, fh_static, b, ys, exo_ss, params, T, M_);
                if errorflag
                    check = 1;
                    break
                end
            else
                nze = length(M_.block_structure_stat.block(b).g1_sparse_rowval);
                [ys, T, success] = solve_one_boundary(fh_static, ys, exo_ss, ...
                                                      params, [], T, mfs_idx, nze, 1, false, b, 0, options_.steady.maxit, ...
                                                      options_.solve_tolf, ...
                                                      0, options_.solve_algo, true, false, false, M_, options_);
                if ~success
                    check = 1;
                    break
                end
            end
        end
        % Compute endogenous if the block is of type evaluate forward/backward or if there are recursive variables in a solve block.
        % Also update the temporary terms vector (needed for the dynare_solve case)
        [ys, T] = fh_static(ys, exo_ss, params, M_.block_structure_stat.block(b).g1_sparse_rowval, ...
                            M_.block_structure_stat.block(b).g1_sparse_colval, ...
                            M_.block_structure_stat.block(b).g1_sparse_colptr, T);
    end
elseif options_.bytecode
    if options_.solve_algo >= 5 && options_.solve_algo <= 8
        try
            if options_.block
                ys = bytecode('static', 'block_decomposed', M_, options_, ys_init, exo_ss, params);
            else
                ys = bytecode('static', M_, options_, ys_init, exo_ss, params);
            end
        catch ME
            if options_.verbosity >= 1
                disp(ME.message);
            end
            ys = ys_init;
            check = 1;
        end
    elseif options_.block
        ys = ys_init;
        T = NaN(M_.block_structure_stat.tmp_nbr, 1);
        for b = 1:length(M_.block_structure_stat.block)
            if M_.block_structure_stat.block(b).Simulation_Type ~= 1 && ...
                    M_.block_structure_stat.block(b).Simulation_Type ~= 2
                mfs_idx = M_.block_structure_stat.block(b).variable(end-M_.block_structure_stat.block(b).mfs+1:end);
                [ys(mfs_idx), errorflag] = dynare_solve(@block_bytecode_mfs_steadystate, ...
                                                        ys(mfs_idx), options_.steady.maxit, ...
                                                        options_.solve_tolf, options_.solve_tolx, ...
                                                        options_, b, ys, exo_ss, params, T, M_, options_);
                if errorflag
                    check = 1;
                    break
                end
            end
            % Compute endogenous if the block is of type evaluate forward/backward or if there are recursive variables in a solve block.
            % Also update the temporary terms vector (needed for the dynare_solve case)
            try
                [~, ~, ys, T] = bytecode(M_, options_, ys, exo_ss, params, ys, 1, ys, T, 'evaluate', 'static', ...
                                         'block_decomposed', ['block=' int2str(b)]);
            catch ME
                if options_.verbosity >= 1
                    disp(ME.message);
                end
                check = 1;
                break
            end
        end
    else
        [ys, check] = dynare_solve(@bytecode_steadystate, ys_init, ...
                                   options_.steady.maxit, options_.solve_tolf, options_.solve_tolx, ...
                                   options_, exo_ss, params, M_, options_);
    end
end

if check
    info(1)= 20;
    %make sure ys contains auxiliary variables in case of problem with dynare_solve
    if length(M_.aux_vars) > 0 && ~steadystate_flag
        if M_.set_auxiliary_variables
            ys = h_set_auxiliary_variables(ys,exo_ss,params);
        end
    end
    resid = evaluate_static_model(ys,exo_ss,params,M_,options_);
    info(2) = resid'*resid ;
    if isnan(info(2))
        info(1)=22;
    end
    return
end

% If some equations are tagged [static] or [dynamic], verify consistency
if M_.static_and_dynamic_models_differ
    % Evaluate residual of *dynamic* model using the steady state
    % computed on the *static* one
    if options_.bytecode
        z = repmat(ys,1,M_.maximum_lead + M_.maximum_lag + 1);
        zx = repmat(exo_ss', M_.maximum_lead + M_.maximum_lag + 1, 1);
        r = bytecode('dynamic','evaluate', M_, options_, z, zx, params, ys, 1);
    else
        r = feval([M_.fname '.sparse.dynamic_resid'], repmat(ys, 3, 1), exo_ss, params, ys);
    end
    % Fail if residual greater than tolerance
    if max(abs(r)) > options_.solve_tolf
        info(1) = 25;
        return
    end
end

if ~isreal(ys)
    if sum(imag(ys).^2) < 1e-7
        ys=real(ys);
    else
        info(1) = 21;
        info(2) = sum(imag(ys).^2);
        ys = real(ys);
    return
    end
end

if ~isempty(find(isnan(ys)))
    info(1) = 22;
    info(2) = NaN;
    return
end

function [resids,jac] = static_problem(y, x, params, nvar, fh_static_resid, fh_static_g1, sparse_rowval, sparse_colval, sparse_colptr)
[r, T_order, T] = fh_static_resid(y, x, params);
j = fh_static_g1(y, x, params, sparse_rowval, sparse_colval, sparse_colptr, T_order, T);
resids = r(1:nvar);
jac = j(1:nvar,1:nvar);

function [resids,jac] = static_mcp_problem(y, x, params, nvar, fh_static_resid, fh_static_g1, sparse_rowval, sparse_colval, sparse_colptr, eq_index)
[r, T_order, T] = fh_static_resid(y, x, params);
j = fh_static_g1(y, x, params, sparse_rowval, sparse_colval, sparse_colptr, T_order, T);
resids = r(eq_index);
jac = j(eq_index,1:nvar);

function [r, g1] = block_mfs_steadystate(y, fh_static, b, y_all, exo, params, T, M_)
% Wrapper around the static files, for block without bytecode
mfs_idx = M_.block_structure_stat.block(b).variable(end-M_.block_structure_stat.block(b).mfs+1:end);
y_all(mfs_idx) = y;
[~,~,r,g1] = fh_static(y_all, exo, params, M_.block_structure_stat.block(b).g1_sparse_rowval, ...
                       M_.block_structure_stat.block(b).g1_sparse_colval, ...
                       M_.block_structure_stat.block(b).g1_sparse_colptr, T);

function [r, g1] = bytecode_steadystate(y, exo, params, M_, options_)
% Wrapper around the static file, for bytecode (without block)
[r, g1] = bytecode(M_, options_, y, exo, params, y, 1, exo, 'evaluate', 'static');

function [r, g1] = block_bytecode_mfs_steadystate(y, b, y_all, exo, params, T, M_, options_)
% Wrapper around the static files, for bytecode with block
mfs_idx = M_.block_structure_stat.block(b).variable(end-M_.block_structure_stat.block(b).mfs+1:end);
y_all(mfs_idx) = y;
[r, g1] = bytecode(M_, options_, y_all, exo, params, y_all, 1, y_all, T, 'evaluate', 'static', 'block_decomposed', ['block=' int2str(b) ]);
g1 = g1(:,end-M_.block_structure_stat.block(b).mfs+1:end); % Make Jacobian square if mfs>0