1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
function [ys,params,info] = evaluate_steady_state(ys_init,exo_ss,M_,options_,steadystate_check_flag)
% function [ys,params,info] = evaluate_steady_state(ys_init,exo_ss,M_,options_,steadystate_check_flag)
% Computes the steady state
%
% INPUTS
% ys_init vector initial values used to compute the steady
% state
% exo_ss vector exogenous steady state (incl. deterministic exogenous)
% M_ struct model structure
% options_ struct options
% steadystate_check_flag boolean if true, check that the
% steadystate verifies the
% static model
%
% OUTPUTS
% ys vector steady state (in declaration order)
% params vector model parameters possibly
% modified by user steadystate
% function
% info 2x1 vector error codes
%
% SPECIAL REQUIREMENTS
% none
% Copyright © 2001-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
if options_.solve_algo < 0 || options_.solve_algo > 14
error('STEADY: solve_algo must be between 0 and 14')
end
if ~options_.bytecode && ~options_.block && options_.solve_algo > 4 && ...
options_.solve_algo < 9
error('STEADY: you can''t use solve_algo = {5,6,7,8} without block nor bytecode options_')
end
if ~options_.bytecode && options_.block && options_.solve_algo == 5
error('STEADY: you can''t use solve_algo = 5 without bytecode option')
end
if isoctave && options_.solve_algo == 11
error('STEADY: you can''t use solve_algo = %u under Octave',options_.solve_algo)
end
% To ensure that the z and zx matrices constructed by repmat and passed to bytecode
% are of the right size.
if size(ys_init, 2) > 1
error('ys_init must be a column-vector')
end
if size(exo_ss, 2) > 1
error('exo_ss must be a column-vector')
end
info = 0;
check = 0;
steadystate_flag = options_.steadystate_flag;
params = M_.params;
if length(M_.aux_vars) > 0 && ~steadystate_flag && M_.set_auxiliary_variables
h_set_auxiliary_variables = str2func([M_.fname '.set_auxiliary_variables']);
ys_init = h_set_auxiliary_variables(ys_init,exo_ss,params);
end
if options_.ramsey_policy
if ~isfinite(M_.params(strmatch('optimal_policy_discount_factor',M_.param_names,'exact')))
fprintf('\nevaluate_steady_state: the planner_discount is NaN/Inf. That will cause problems.\n')
end
if steadystate_flag
% explicit steady state file
[ys,params,info] = evaluate_steady_state_file(ys_init,exo_ss,M_, ...
options_,steadystate_check_flag);
%test whether it solves model conditional on the instruments
if ~options_.debug
resids = evaluate_static_model(ys,exo_ss,params,M_,options_);
else
[resids, ~ , jacob]= evaluate_static_model(ys,exo_ss,params,M_,options_);
end
nan_indices=find(isnan(resids(M_.ramsey_orig_endo_nbr+(1:M_.ramsey_orig_eq_nbr))));
if ~isempty(nan_indices)
if options_.debug
fprintf('\nevaluate_steady_state: The steady state file computation for the Ramsey problem resulted in NaNs.\n')
fprintf('evaluate_steady_state: The steady state was computed conditional on the following initial instrument values: \n')
for ii = 1:size(options_.instruments,1)
fprintf('\t %s \t %f \n',options_.instruments{ii},ys_init(strmatch(options_.instruments{ii},M_.endo_names,'exact')))
end
fprintf('evaluate_steady_state: The problem occured in the following equations: \n')
fprintf('\t Equation(s): ')
for ii=1:length(nan_indices)
fprintf('%d, ',nan_indices(ii));
end
skipline()
fprintf('evaluate_steady_state: If those initial values are not admissable, change them using an initval-block.\n')
skipline(2)
end
info(1) = 84;
info(2) = resids'*resids;
return
end
if any(imag(ys(M_.ramsey_orig_endo_nbr+(1:M_.ramsey_orig_eq_nbr))))
if options_.debug
fprintf('\nevaluate_steady_state: The steady state file computation for the Ramsey problem resulted in complex numbers.\n')
fprintf('evaluate_steady_state: The steady state was computed conditional on the following initial instrument values: \n')
for ii = 1:size(options_.instruments,1)
fprintf('\t %s \t %f \n',options_.instruments{ii},ys_init(strmatch(options_.instruments{ii},M_.endo_names,'exact')))
end
fprintf('evaluate_steady_state: If those initial values are not admissable, change them using an initval-block.\n')
skipline(2)
end
info(1) = 86;
info(2) = resids'*resids;
return
end
if max(abs(resids(M_.ramsey_orig_endo_nbr+(1:M_.ramsey_orig_eq_nbr)))) > options_.solve_tolf %does it solve for all variables except for the Lagrange multipliers
if options_.debug
fprintf('\nevaluate_steady_state: The steady state file does not solve the steady state for the Ramsey problem.\n')
fprintf('evaluate_steady_state: Conditional on the following instrument values: \n')
for ii = 1:size(options_.instruments,1)
fprintf('\t %s \t %f \n',options_.instruments{ii},ys_init(strmatch(options_.instruments{ii},M_.endo_names,'exact')))
end
fprintf('evaluate_steady_state: the following equations have non-zero residuals: \n')
for ii=M_.ramsey_orig_endo_nbr+1:M_.endo_nbr
if abs(resids(ii)) > options_.solve_tolf
fprintf('\t Equation number %d: %f\n',ii-M_.ramsey_orig_endo_nbr, resids(ii))
end
end
skipline(2)
end
info(1) = 85;
info(2) = resids'*resids;
return
end
end
if options_.debug
if steadystate_flag
infrow=find(isinf(ys_init(1:M_.orig_endo_nbr)));
else
infrow=find(isinf(ys_init));
end
if ~isempty(infrow)
fprintf('\nevaluate_steady_state: The initial values for the steady state of the following variables are Inf:\n');
for iter=1:length(infrow)
fprintf('%s\n',M_.endo_names{infrow(iter)});
end
end
if steadystate_flag
nanrow=find(isnan(ys_init(1:M_.orig_endo_nbr)));
else
nanrow=find(isnan(ys_init));
end
if ~isempty(nanrow)
fprintf('\nevaluate_steady_state: The initial values for the steady state of the following variables are NaN:\n');
for iter=1:length(nanrow)
fprintf('%s\n',M_.endo_names{nanrow(iter)});
end
end
if steadystate_flag
nan_indices_mult=find(isnan(resids(1:M_.ramsey_orig_endo_nbr)));
if any(nan_indices_mult)
fprintf('evaluate_steady_state: The steady state results NaN for auxiliary equation %u.\n',nan_indices_mult);
fprintf('evaluate_steady_state: This is often a sign of problems.\n');
end
[infrow,infcol]=find(isinf(jacob));
if ~isempty(infrow)
fprintf('\nevaluate_steady_state: The Jacobian of the dynamic model contains Inf. The problem is associated with:\n\n')
display_problematic_vars_Jacobian(infrow,infcol,M_,ys,'static','evaluate_steady_state: ')
end
if ~isreal(jacob)
[imagrow,imagcol]=find(abs(imag(jacob))>1e-15);
fprintf('\nevaluate_steady_state: The Jacobian of the dynamic model contains imaginary parts. The problem arises from: \n\n')
display_problematic_vars_Jacobian(imagrow,imagcol,M_,ys,'static','evaluate_steady_state: ')
end
[nanrow,nancol]=find(isnan(jacob));
if ~isempty(nanrow)
fprintf('\nevaluate_steady_state: The Jacobian of the dynamic model contains NaN. The problem is associated with:\n\n')
display_problematic_vars_Jacobian(nanrow,nancol,M_,ys,'static','evaluate_steady_state: ')
end
end
end
%either if no steady state file or steady state file without problems
[ys,params,info] = dyn_ramsey_static(ys_init,exo_ss,M_,options_);
if info
return
end
%check whether steady state really solves the model
resids = evaluate_static_model(ys,exo_ss,params,M_,options_);
nan_indices_multiplier=find(isnan(resids(1:M_.ramsey_orig_endo_nbr)));
nan_indices=find(isnan(resids(M_.ramsey_orig_endo_nbr+1:end)));
if ~isempty(nan_indices)
if options_.debug
fprintf('\nevaluate_steady_state: The steady state computation for the Ramsey problem resulted in NaNs.\n')
fprintf('evaluate_steady_state: The steady state computation resulted in the following instrument values: \n')
for i = 1:size(options_.instruments,1)
fprintf('\t %s \t %f \n',options_.instruments{i},ys(strmatch(options_.instruments{i},M_.endo_names,'exact')))
end
fprintf('evaluate_steady_state: The problem occured in the following equations: \n')
fprintf('\t Equation(s): ')
for ii=1:length(nan_indices)
fprintf('%d, ',nan_indices(ii));
end
skipline()
end
info(1) = 82;
return
end
if ~isempty(nan_indices_multiplier)
if options_.debug
fprintf('\nevaluate_steady_state: The steady state computation for the Ramsey problem resulted in NaNs in the auxiliary equations.\n')
fprintf('evaluate_steady_state: The steady state computation resulted in the following instrument values: \n')
for i = 1:size(options_.instruments,1)
fprintf('\t %s \t %f \n',options_.instruments{i},ys(strmatch(options_.instruments{i},M_.endo_names,'exact')))
end
fprintf('evaluate_steady_state: The problem occured in the following equations: \n')
fprintf('\t Auxiliary equation(s): ')
for ii=1:length(nan_indices_multiplier)
fprintf('%d, ',nan_indices_multiplier(ii));
end
skipline()
end
info(1) = 83;
return
end
if max(abs(resids)) > options_.solve_tolf %does it solve for all variables including the auxiliary ones
if options_.debug
fprintf('\nevaluate_steady_state: The steady state for the Ramsey problem could not be computed.\n')
fprintf('evaluate_steady_state: The steady state computation stopped with the following instrument values:: \n')
for i = 1:size(options_.instruments,1)
fprintf('\t %s \t %f \n',options_.instruments{i},ys(strmatch(options_.instruments{i},M_.endo_names,'exact')))
end
fprintf('evaluate_steady_state: The following equations have non-zero residuals: \n')
for ii=1:M_.ramsey_orig_endo_nbr
if abs(resids(ii)) > options_.solve_tolf/100
fprintf('\t Auxiliary Ramsey equation number %d: %f\n',ii, resids(ii))
end
end
for ii=M_.ramsey_orig_endo_nbr+1:M_.endo_nbr
if abs(resids(ii)) > options_.solve_tolf/100
fprintf('\t Equation number %d: %f\n',ii-M_.ramsey_orig_endo_nbr, resids(ii))
end
end
skipline(2)
end
info(1) = 81;
info(2) = resids'*resids;
return
end
elseif steadystate_flag
% explicit steady state file
[ys,params,info] = evaluate_steady_state_file(ys_init,exo_ss,M_, options_,steadystate_check_flag);
if size(ys,2)>size(ys,1)
error('STEADY: steady_state-file must return a column vector, not a row vector.')
end
if info(1)
return
end
elseif ~options_.bytecode && ~options_.block
static_resid = str2func(sprintf('%s.sparse.static_resid', M_.fname));
static_g1 = str2func(sprintf('%s.sparse.static_g1', M_.fname));
if ~options_.linear
% non linear model
if ismember(options_.solve_algo,[10,11])
[lb,ub,eq_index] = get_complementarity_conditions(M_,options_.ramsey_policy);
if options_.solve_algo == 10
options_.lmmcp.lb = lb;
options_.lmmcp.ub = ub;
elseif options_.solve_algo == 11
options_.mcppath.lb = lb;
options_.mcppath.ub = ub;
end
[ys,check,fvec, fjac, errorcode] = dynare_solve(@static_mcp_problem,...
ys_init,...
options_.steady.maxit, options_.solve_tolf, options_.solve_tolx, ...
options_, exo_ss, params,...
M_.endo_nbr, static_resid, static_g1, ...
M_.static_g1_sparse_rowval, M_.static_g1_sparse_colval, M_.static_g1_sparse_colptr, eq_index);
else
[ys, check, fvec, fjac, errorcode] = dynare_solve(@static_problem, ys_init, ...
options_.steady.maxit, options_.solve_tolf, options_.solve_tolx, ...
options_, exo_ss, params, M_.endo_nbr, static_resid, static_g1, ...
M_.static_g1_sparse_rowval, M_.static_g1_sparse_colval, M_.static_g1_sparse_colptr);
end
if check && options_.debug
dprintf('Nonlinear solver routine returned errorcode=%i.', errorcode)
skipline()
[infrow,infcol]=find(isinf(fjac) | isnan(fjac));
if ~isempty(infrow)
fprintf('\nSTEADY: The Jacobian at the initial values contains Inf or NaN. The problem arises from: \n')
display_problematic_vars_Jacobian(infrow,infcol,M_,ys_init,'static','STEADY: ')
end
problematic_equation = find(~isfinite(fvec));
if ~isempty(problematic_equation)
fprintf('\nSTEADY: numerical initial values or parameters incompatible with the following equations\n')
disp(problematic_equation')
fprintf('Please check for example\n')
fprintf(' i) if all parameters occurring in these equations are defined\n')
fprintf(' ii) that no division by an endogenous variable initialized to 0 occurs\n')
end
end
else
% linear model
[fvec, T_order, T] = static_resid(ys_init, exo_ss, params);
jacob = static_g1(ys_init, exo_ss, params, M_.static_g1_sparse_rowval, M_.static_g1_sparse_colval, M_.static_g1_sparse_colptr, T_order, T);
ii = find(~isfinite(fvec));
if ~isempty(ii)
ys=fvec;
check=1;
disp(['STEADY: numerical initial values or parameters incompatible with the following' ...
' equations'])
disp(ii')
disp('Check whether your model is truly linear. Put "resid(1);" before "steady;" to see the problematic equations.')
elseif isempty(ii) && max(abs(fvec)) > 1e-12
ys = ys_init-jacob\fvec;
resid = evaluate_static_model(ys,exo_ss,params,M_,options_);
if max(abs(resid)) > 1e-6
check=1;
fprintf('STEADY: No steady state for your model could be found\n')
fprintf('STEADY: Check whether your model is truly linear. Put "resid(1);" before "steady;" to see the problematic equations.\n')
end
else
ys = ys_init;
end
if options_.debug
if any(any(isinf(jacob) | isnan(jacob)))
[infrow,infcol]=find(isinf(jacob) | isnan(jacob));
fprintf('\nSTEADY: The Jacobian contains Inf or NaN. The problem arises from: \n\n')
for ii=1:length(infrow)
fprintf('STEADY: Derivative of Equation %d with respect to Variable %s (initial value of %s: %g) \n',infrow(ii),M_.endo_names{infcol(ii),:},M_.endo_names{infcol(ii),:},ys_init(infcol(ii)))
end
fprintf('Check whether your model is truly linear. Put "resid(1);" before "steady;" to see the problematic equations.\n')
end
end
end
elseif ~options_.bytecode && options_.block
ys = ys_init;
T = NaN(M_.block_structure_stat.tmp_nbr, 1);
for b = 1:length(M_.block_structure_stat.block)
fh_static = str2func(sprintf('%s.sparse.block.static_%d', M_.fname, b));
if M_.block_structure_stat.block(b).Simulation_Type ~= 1 && ...
M_.block_structure_stat.block(b).Simulation_Type ~= 2
mfs_idx = M_.block_structure_stat.block(b).variable(end-M_.block_structure_stat.block(b).mfs+1:end);
if options_.solve_algo <= 4 || options_.solve_algo >= 9
[ys(mfs_idx), errorflag] = dynare_solve(@block_mfs_steadystate, ys(mfs_idx), ...
options_.steady.maxit, options_.solve_tolf, options_.solve_tolx, ...
options_, fh_static, b, ys, exo_ss, params, T, M_);
if errorflag
check = 1;
break
end
else
nze = length(M_.block_structure_stat.block(b).g1_sparse_rowval);
[ys, T, success] = solve_one_boundary(fh_static, ys, exo_ss, ...
params, [], T, mfs_idx, nze, 1, false, b, 0, options_.steady.maxit, ...
options_.solve_tolf, ...
0, options_.solve_algo, true, false, false, M_, options_);
if ~success
check = 1;
break
end
end
end
% Compute endogenous if the block is of type evaluate forward/backward or if there are recursive variables in a solve block.
% Also update the temporary terms vector (needed for the dynare_solve case)
[ys, T] = fh_static(ys, exo_ss, params, M_.block_structure_stat.block(b).g1_sparse_rowval, ...
M_.block_structure_stat.block(b).g1_sparse_colval, ...
M_.block_structure_stat.block(b).g1_sparse_colptr, T);
end
elseif options_.bytecode
if options_.solve_algo >= 5 && options_.solve_algo <= 8
try
if options_.block
ys = bytecode('static', 'block_decomposed', M_, options_, ys_init, exo_ss, params);
else
ys = bytecode('static', M_, options_, ys_init, exo_ss, params);
end
catch ME
if options_.verbosity >= 1
disp(ME.message);
end
ys = ys_init;
check = 1;
end
elseif options_.block
ys = ys_init;
T = NaN(M_.block_structure_stat.tmp_nbr, 1);
for b = 1:length(M_.block_structure_stat.block)
if M_.block_structure_stat.block(b).Simulation_Type ~= 1 && ...
M_.block_structure_stat.block(b).Simulation_Type ~= 2
mfs_idx = M_.block_structure_stat.block(b).variable(end-M_.block_structure_stat.block(b).mfs+1:end);
[ys(mfs_idx), errorflag] = dynare_solve(@block_bytecode_mfs_steadystate, ...
ys(mfs_idx), options_.steady.maxit, ...
options_.solve_tolf, options_.solve_tolx, ...
options_, b, ys, exo_ss, params, T, M_, options_);
if errorflag
check = 1;
break
end
end
% Compute endogenous if the block is of type evaluate forward/backward or if there are recursive variables in a solve block.
% Also update the temporary terms vector (needed for the dynare_solve case)
try
[~, ~, ys, T] = bytecode(M_, options_, ys, exo_ss, params, ys, 1, ys, T, 'evaluate', 'static', ...
'block_decomposed', ['block=' int2str(b)]);
catch ME
if options_.verbosity >= 1
disp(ME.message);
end
check = 1;
break
end
end
else
[ys, check] = dynare_solve(@bytecode_steadystate, ys_init, ...
options_.steady.maxit, options_.solve_tolf, options_.solve_tolx, ...
options_, exo_ss, params, M_, options_);
end
end
if check
info(1)= 20;
%make sure ys contains auxiliary variables in case of problem with dynare_solve
if length(M_.aux_vars) > 0 && ~steadystate_flag
if M_.set_auxiliary_variables
ys = h_set_auxiliary_variables(ys,exo_ss,params);
end
end
resid = evaluate_static_model(ys,exo_ss,params,M_,options_);
info(2) = resid'*resid ;
if isnan(info(2))
info(1)=22;
end
return
end
% If some equations are tagged [static] or [dynamic], verify consistency
if M_.static_and_dynamic_models_differ
% Evaluate residual of *dynamic* model using the steady state
% computed on the *static* one
if options_.bytecode
z = repmat(ys,1,M_.maximum_lead + M_.maximum_lag + 1);
zx = repmat(exo_ss', M_.maximum_lead + M_.maximum_lag + 1, 1);
r = bytecode('dynamic','evaluate', M_, options_, z, zx, params, ys, 1);
else
r = feval([M_.fname '.sparse.dynamic_resid'], repmat(ys, 3, 1), exo_ss, params, ys);
end
% Fail if residual greater than tolerance
if max(abs(r)) > options_.solve_tolf
info(1) = 25;
return
end
end
if ~isreal(ys)
if sum(imag(ys).^2) < 1e-7
ys=real(ys);
else
info(1) = 21;
info(2) = sum(imag(ys).^2);
ys = real(ys);
return
end
end
if ~isempty(find(isnan(ys)))
info(1) = 22;
info(2) = NaN;
return
end
function [resids,jac] = static_problem(y, x, params, nvar, fh_static_resid, fh_static_g1, sparse_rowval, sparse_colval, sparse_colptr)
[r, T_order, T] = fh_static_resid(y, x, params);
j = fh_static_g1(y, x, params, sparse_rowval, sparse_colval, sparse_colptr, T_order, T);
resids = r(1:nvar);
jac = j(1:nvar,1:nvar);
function [resids,jac] = static_mcp_problem(y, x, params, nvar, fh_static_resid, fh_static_g1, sparse_rowval, sparse_colval, sparse_colptr, eq_index)
[r, T_order, T] = fh_static_resid(y, x, params);
j = fh_static_g1(y, x, params, sparse_rowval, sparse_colval, sparse_colptr, T_order, T);
resids = r(eq_index);
jac = j(eq_index,1:nvar);
function [r, g1] = block_mfs_steadystate(y, fh_static, b, y_all, exo, params, T, M_)
% Wrapper around the static files, for block without bytecode
mfs_idx = M_.block_structure_stat.block(b).variable(end-M_.block_structure_stat.block(b).mfs+1:end);
y_all(mfs_idx) = y;
[~,~,r,g1] = fh_static(y_all, exo, params, M_.block_structure_stat.block(b).g1_sparse_rowval, ...
M_.block_structure_stat.block(b).g1_sparse_colval, ...
M_.block_structure_stat.block(b).g1_sparse_colptr, T);
function [r, g1] = bytecode_steadystate(y, exo, params, M_, options_)
% Wrapper around the static file, for bytecode (without block)
[r, g1] = bytecode(M_, options_, y, exo, params, y, 1, exo, 'evaluate', 'static');
function [r, g1] = block_bytecode_mfs_steadystate(y, b, y_all, exo, params, T, M_, options_)
% Wrapper around the static files, for bytecode with block
mfs_idx = M_.block_structure_stat.block(b).variable(end-M_.block_structure_stat.block(b).mfs+1:end);
y_all(mfs_idx) = y;
[r, g1] = bytecode(M_, options_, y_all, exo, params, y_all, 1, y_all, T, 'evaluate', 'static', 'block_decomposed', ['block=' int2str(b) ]);
g1 = g1(:,end-M_.block_structure_stat.block(b).mfs+1:end); % Make Jacobian square if mfs>0
|