File: get_companion_matrix.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (162 lines) | stat: -rw-r--r-- 7,331 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
function [A0, A0star, AR, B] = get_companion_matrix(auxiliary_model_name, auxiliary_model_type)

% Gets the companion VAR representation of a PAC auxiliary model.
% Depending on the nature of this auxiliary model the output is
% saved in oo_.{var,trend_component}.(auxiliary_model_name).CompanionMatrix
%
% INPUTS
% - auxiliary_model_name     [string]    the name of the auxiliary model
% - auxiliary_model_type     [string]    the type of the auxiliary model
%                                        ('var' or 'trend_component')
%
% OUTPUTS
% - None

% Copyright © 2018-2019 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

global oo_ M_

if nargin < 2
    if isfield(M_, 'var') && isfield(M_.var, auxiliary_model_name)
        auxiliary_model_type = 'var';
    elseif isfield(M_, 'trend_component') && isfield(M_.trend_component, auxiliary_model_name)
        auxiliary_model_type = 'trend_component';
    else
        error('Unknown type of auxiliary model.')
    end
end

if strcmp(auxiliary_model_type, 'var')
    [AR, ~, Constant] = feval(sprintf('%s.varmatrices', M_.fname), auxiliary_model_name, M_.params, M_.var.(auxiliary_model_name).structural);
    isconstant = any(abs(Constant)>0);
    M_.var.(auxiliary_model_name).isconstant = isconstant; % FIXME Could be done by preprocessor instead…
elseif strcmp(auxiliary_model_type, 'trend_component')
    [AR, A0, A0star] = feval(sprintf('%s.trend_component_ar_a0', M_.fname), auxiliary_model_name, M_.params);
else
    error('Unknown type of auxiliary model.')
end

% Get the number of lags
p = size(AR, 3);

% Get the number of variables
n = length(M_.(auxiliary_model_type).(auxiliary_model_name).lhs);

switch auxiliary_model_type
  case 'var'
    oo_.var.(auxiliary_model_name).CompanionMatrix = zeros(n*p+isconstant);
    oo_.var.(auxiliary_model_name).CompanionMatrix(isconstant+(1:n),isconstant+(1:n)) = AR(:,:,1);
    for i = 2:p
        oo_.var.(auxiliary_model_name).CompanionMatrix(isconstant+(1:n),isconstant+(i-1)*n+(1:n)) = AR(:,:,i);
        oo_.var.(auxiliary_model_name).CompanionMatrix(isconstant+(i-1)*n+(1:n),isconstant+(i-2)*n+(1:n)) = eye(n);
    end
    if isconstant
        oo_.var.(auxiliary_model_name).CompanionMatrix(1,1) = 1;
        for i=1:n
            oo_.var.(auxiliary_model_name).CompanionMatrix(1+i,1) = Constant(i);
        end
    end
    M_.var.(auxiliary_model_name).list_of_variables_in_companion_var = M_.endo_names(M_.var.(auxiliary_model_name).lhs);
    if nargout
        A0 = [];
        A0star = [];
        B  = [];
    end
  case 'trend_component'
    % Get number of trends.
    q = sum(M_.trend_component.(auxiliary_model_name).targets);
    % Get the number of equations with error correction.
    m  = n - q;
    % Get the indices of trend and EC equations in the auxiliary model.
    target_eqnums_in_auxiliary_model = M_.trend_component.(auxiliary_model_name).target_eqn;
    ecm_eqnums_in_auxiliary_model = find(~M_.trend_component.(auxiliary_model_name).targets);

    % REMARK It is assumed that the non trend equations are the error correction
    %        equations. We assume that the model can be cast in the following form:
    %
    %        Δ Xₜ₋₁ = A₀ (Xₜ₋₁ - C₀Zₜ₋₁) + Σᵢ₌₁ᵖ Aᵢ Δ Xₜ₋ᵢ + ϵₜ
    %
    %        Zₜ = Zₜ₋₁ + ηₜ
    %
    %        where Xₜ is a n×1 vector and Zₜ is an m×1 vector, A₀ is a
    %        n×n matrix, C₀ a n×m matrix, and Aᵢ (i=1,…,p) are n×n
    %        matrices. Matrix C₀ can be factorized as C₀ = (A₀)⁻¹×Λ,
    %        where Λ is a n×m matrix.
    %
    %        We rewrite the model in levels (we integrate the first set
    %        of equations) and rewrite the model as a VAR(1) model. Let
    %        Yₜ = [Xₜ; Zₜ] be the vertical concatenation of vectors
    %        Xₜ (variables with EC) and Zₜ (trends). We have
    %
    %        Yₜ = Σᵢ₌₁ᵖ⁺¹ Bᵢ Yₜ₋ᵢ + [εₜ; ηₜ]
    %
    %        with
    %
    %               B₁ = [I+A₀+A₁, -Λ; 0, I]
    %
    %               Bᵢ = [Aᵢ-Aᵢ₋₁, 0; 0, 0]   for i = 2,…, p
    %        and
    %               Bₚ₊₁ = -[Aₚ, 0; 0, 0]
    %
    %        where the dimensions of I and 0 matrices can easily be
    %        deduced from the number of EC and trend equations.

    % Check that the lhs of candidate ecm equations are at least first differences.
    for i = 1:m
        if ~get_difference_order(M_.trend_component.(auxiliary_model_name).lhs(ecm_eqnums_in_auxiliary_model(i)))
            error([auxiliary_model_name ' is not a trend component model. The LHS variables should be in differences'])
        end
    end
    % Get the EC matrix (the EC term is assumend to be in t-1).
    %
    % TODO: Check that the EC term is the difference between the
    %       endogenous variable and the trend variable.
    %
    % Build B matrices (VAR in levels)
    B = zeros(m+q, m+q, p+1);
    B(ecm_eqnums_in_auxiliary_model, ecm_eqnums_in_auxiliary_model, 1) = eye(m) + A0 + AR(:,:,1);
    B(ecm_eqnums_in_auxiliary_model, target_eqnums_in_auxiliary_model) = -A0star;
    B(target_eqnums_in_auxiliary_model, target_eqnums_in_auxiliary_model) = eye(q);
    for i = 2:p
        B(ecm_eqnums_in_auxiliary_model,ecm_eqnums_in_auxiliary_model,i) = AR(:,:,i) - AR(:,:,i-1);
    end
    B(ecm_eqnums_in_auxiliary_model,ecm_eqnums_in_auxiliary_model,p+1) = -AR(:,:,p);
    % Write Companion matrix
    oo_.trend_component.(auxiliary_model_name).CompanionMatrix = zeros(size(B, 1)*size(B, 3));
    for i = 1:p
        oo_.trend_component.(auxiliary_model_name).CompanionMatrix(1:n, (i-1)*n+(1:n)) = B(:,:,i);
        oo_.trend_component.(auxiliary_model_name).CompanionMatrix(i*n+(1:n),(i-1)*n+(1:n)) = eye(n);
    end
    oo_.trend_component.(auxiliary_model_name).CompanionMatrix(1:n, p*n+(1:n)) = B(:,:,p+1);
    M_.trend_component.(auxiliary_model_name).list_of_variables_in_companion_var = M_.endo_names(M_.trend_component.(auxiliary_model_name).lhs);
    variables_rewritten_in_levels = M_.trend_component.(auxiliary_model_name).list_of_variables_in_companion_var(ecm_eqnums_in_auxiliary_model);
    for i=1:m
        id = get_aux_variable_id(variables_rewritten_in_levels{i});
        if id
            auxinfo = M_.aux_vars(id);
            if auxinfo.type==8
                M_.trend_component.(auxiliary_model_name).list_of_variables_in_companion_var(ecm_eqnums_in_auxiliary_model(i)) = ...
                    {M_.endo_names{auxinfo.orig_index}};
            else
                error('This is a bug. Please contact the Dynare Team.')
            end
        else
            error('This is a bug. Please contact the Dynare Team.')
        end
    end
end