1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
function model_info(options_model_info_)
%function model_info(options_model_info_)
% Copyright © 2008-2022 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
global M_;
dynamic_ = isfield(options_model_info_, 'block_dynamic') && options_model_info_.block_dynamic;
static_ = isfield(options_model_info_, 'block_static') && options_model_info_.block_static;
incidence = isfield(options_model_info_, 'incidence') && options_model_info_.incidence;
if static_
temp_string=sprintf('\nInformation about %s (static model)\n',M_.fname);
fprintf(temp_string);
block_structure_str = 'block_structure_stat';
if ~isfield(M_,'block_structure_stat')
fprintf('\nmodel_info: block information not present; skipping display.\n')
return;
else
nb_leadlag = 1;
end
else
temp_string=sprintf('\nInformation about %s (dynamic model)\n',M_.fname);
fprintf(temp_string);
block_structure_str = 'block_structure';
if dynamic_ && isfield(M_,'block_structure')
fprintf('\nmodel_info: block information not present; skipping display.\n')
return;
elseif dynamic_
nb_leadlag = length([M_.(block_structure_str).incidence.lead_lag]);
end
end
if dynamic_ || static_ || incidence %block information requested
if static_
block_structure = M_.block_structure_stat;
else
block_structure = M_.block_structure;
end
fprintf([char(ones(1,length(temp_string))*'='),'\n']);
nb_blocks=length(block_structure.block);
fprintf('The model has %d equations and is decomposed into %d blocks as follows:\n',M_.endo_nbr,nb_blocks);
fprintf('================================================================================================================================\n');
fprintf('| %10s | %10s | %30s | %31s | %31s |\n','Block no','Size','Block Type','Equation','Dependent variable');
fprintf('|============|============|================================|=================================|=================================|\n');
for i=1:nb_blocks
size_block=length(block_structure.block(i).equation);
if(i>1)
fprintf('|------------|------------|--------------------------------|---------------------------------|---------------------------------|\n');
end
for j=1:size_block
if(j==1)
fprintf('| %10d | %10d | %30s | %-6d %24s | %-6d %24s |\n',i,size_block,Sym_type(block_structure.block(i).Simulation_Type),block_structure.block(i).equation(j),get_equation_name_by_number(block_structure.block(i).equation(j), M_),block_structure.block(i).variable(j),M_.endo_names{block_structure.block(i).variable(j)});
else
fprintf('| %10s | %10s | %30s | %-6d %24s | %-6d %24s |\n','','','',block_structure.block(i).equation(j),get_equation_name_by_number(block_structure.block(i).equation(j), M_),block_structure.block(i).variable(j),M_.endo_names{block_structure.block(i).variable(j)});
end
end
end
fprintf('================================================================================================================================\n');
fprintf('\n');
if static_
fprintf('%-30s %s','The variable','is used contemporaneously in the following equations:');
if(size(block_structure.incidence.sparse_IM,1)>0)
IM=sortrows(block_structure.incidence.sparse_IM,2);
else
IM=[];
end
size_IM=size(IM,1);
last=99999999;
for i=1:size_IM
if(last~=IM(i,2))
fprintf('\n%-30s',M_.endo_names{IM(i,2)});
end
fprintf(' %5d',IM(i,1));
last=IM(i,2);
end
fprintf('\n\n');
else %dynamic model
for k=1:M_.maximum_endo_lag+M_.maximum_endo_lead+1
if(k==M_.maximum_endo_lag+1)
fprintf('%-30s %s','The variable','is used in the following equations contemporaneously');
elseif(k<M_.maximum_endo_lag+1)
fprintf('%-30s %s %d','The variable','is used in the following equations with lag ',M_.maximum_endo_lag+1-k);
else
fprintf('%-30s %s %d','The variable','is used in equations with lead ',k-(M_.maximum_endo_lag+1));
end
if(size(block_structure.incidence(k).sparse_IM,1)>0)
IM=sortrows(block_structure.incidence(k).sparse_IM,2);
else
IM=[];
end
size_IM=size(IM,1);
last=99999999;
for i=1:size_IM
if(last~=IM(i,2))
fprintf('\n%-30s',M_.endo_names{IM(i,2)});
end
fprintf(' %5d',IM(i,1));
last=IM(i,2);
end
fprintf('\n\n');
end
end
if incidence
%printing the gross incidence matrix
IM_star = char([kron(ones(M_.endo_nbr, M_.endo_nbr-1), double(blanks(3))) double(blanks(M_.endo_nbr)')]);
for i = 1:nb_leadlag
n = size(block_structure.incidence(i).sparse_IM,1);
for j = 1:n
if ismember(block_structure.incidence(i).sparse_IM(j,2), M_.state_var)
IM_star(block_structure.incidence(i).sparse_IM(j,1), 3 * (block_structure.incidence(i).sparse_IM(j,2) - 1) + 1) = 'X';
else
IM_star(block_structure.incidence(i).sparse_IM(j,1), 3 * (block_structure.incidence(i).sparse_IM(j,2) - 1) + 1) = '1';
end
end
end
seq = 1: M_.endo_nbr;
blank = [ blanks(cellofchararraymaxlength(M_.endo_names)); blanks(cellofchararraymaxlength(M_.endo_names))];
for i = 1:M_.endo_nbr
if i == 1
var_names = char(blank, M_.endo_names{i});
else
var_names = char(var_names, blank, M_.endo_names{i});
end
end
topp = [char(kron(double(blanks(ceil(log10(M_.endo_nbr)))),ones(cellofchararraymaxlength(M_.endo_names),1))) var_names' ];
bott = [int2str(seq') blanks(M_.endo_nbr)' blanks(M_.endo_nbr)' IM_star];
fprintf('\nGross incidence matrix\n');
fprintf('=======================\n');
disp(topp);
skipline;
disp(bott);
%printing the reordered incidence matrix
IM_star_reordered = char([kron(ones(M_.endo_nbr, M_.endo_nbr-1), double(blanks(3))) double(blanks(M_.endo_nbr)')]);
eq(block_structure.equation_reordered) = seq;
va(block_structure.variable_reordered) = seq;
barre_blank = [ barre(cellofchararraymaxlength(M_.endo_names)); blanks(cellofchararraymaxlength(M_.endo_names))];
cur_block = 1;
for i = 1:M_.endo_nbr
past_block = cur_block;
while ismember(block_structure.variable_reordered(i), block_structure.block(cur_block).variable) == 0
cur_block = cur_block + 1;
end
if i == 1
var_names = char(blank, M_.endo_names{block_structure.variable_reordered(i)});
else
if past_block ~= cur_block
var_names = char(var_names, barre_blank, M_.endo_names{block_structure.variable_reordered(i)});
else
var_names = char(var_names, blank, M_.endo_names{block_structure.variable_reordered(i)});
end
end
end
topp = [char(kron(double(blanks(ceil(log10(M_.endo_nbr)))),ones(cellofchararraymaxlength(M_.endo_names),1))) var_names' ];
n_state_var = length(M_.state_var);
IM_state_var = zeros(n_state_var, n_state_var);
inv_variable_reordered(block_structure.variable_reordered) = 1:M_.endo_nbr;
state_equation = block_structure.equation_reordered(inv_variable_reordered(M_.state_var));
for i = 1:nb_leadlag
n = size(block_structure.incidence(i).sparse_IM,1);
for j = 1:n
[tf, loc] = ismember(block_structure.incidence(i).sparse_IM(j,2), M_.state_var);
if tf
IM_star_reordered(eq(block_structure.incidence(i).sparse_IM(j,1)), 3 * (va(block_structure.incidence(i).sparse_IM(j,2)) - 1) + 1) = 'X';
[tfi, loci] = ismember(block_structure.incidence(i).sparse_IM(j,1), state_equation);
if tfi
IM_state_var(loci, loc) = 1;
end
else
IM_star_reordered(eq(block_structure.incidence(i).sparse_IM(j,1)), 3 * (va(block_structure.incidence(i).sparse_IM(j,2)) - 1) + 1) = '1';
end
end
end
fprintf('\n1: non-null element, X: non-null element related to a state variable\n');
cur_block = 1;
i_last = 0;
block = {};
for i = 1:n_state_var
past_block = cur_block;
while ismember(M_.state_var(i), block_structure.block(cur_block).variable) == 0
cur_block = cur_block + 1;
end
if (past_block ~= cur_block) || (past_block == cur_block && i == n_state_var)
block(past_block).IM_state_var(1:(i - 1 - i_last), 1:i - 1) = IM_state_var(i_last+1:i - 1, 1:i - 1);
i_last = i - 1;
end
end
cur_block = 1;
for i = 1:M_.endo_nbr
past_block = cur_block;
while ismember(block_structure.variable_reordered(i), block_structure.block(cur_block).variable) == 0
cur_block = cur_block + 1;
end
if past_block ~= cur_block
for j = 1:i-1
IM_star_reordered(j, 3 * (i - 1) - 1) = '|';
end
end
end
bott = [int2str(block_structure.equation_reordered') blanks(M_.endo_nbr)' blanks(M_.endo_nbr)' IM_star_reordered];
fprintf('\nReordered incidence matrix\n');
fprintf('==========================\n');
disp(topp);
skipline;
disp(bott);
fprintf('\n1: non-null element, X: non-null element related to a state variable\n');
end
else %non-block information
% print states
if M_.maximum_endo_lag~=0
lag_index=find(M_.lead_lag_incidence(1,:));
fprintf('\nThe following variables appear with a lag and are therefore states:\n')
for var_iter=1:length(lag_index)
print_line(M_.endo_names,lag_index(var_iter),-1,M_)
end
else
lag_index=[];
end
%print forward-looking variables
if M_.maximum_endo_lead~=0
lead_index = find(M_.lead_lag_incidence(M_.maximum_lag+2,:));
fprintf('\nThe following variables appear with a lead and are therefore forward-looking variables:\n')
for var_iter=1:length(lead_index)
print_line(M_.endo_names,lead_index(var_iter),1,M_)
end
else
lead_index=[];
end
%print purely static ones
static_index = setdiff(1:M_.endo_nbr,union(lag_index,lead_index));
if ~isempty(static_index)
fprintf('\nThe following variables do not appear with a lead or lag and are therefore purely static variables:\n')
for var_iter=1:length(static_index)
print_line(M_.endo_names,static_index(var_iter),0,M_)
end
end
skipline;
end
end
function print_line(names,var_index,lead_lag,M_)
if var_index<=M_.orig_endo_nbr
if iscell(names)
if lead_lag==0
fprintf('%s\n',names{var_index})
else
fprintf('%s(%d)\n',names{var_index},lead_lag)
end
else
if lead_lag==0
fprintf('%s\n',names(var_index))
else
fprintf('%s(%d)\n',names(var_index),lead_lag)
end
end
else
aux_index=find([M_.aux_vars(:).endo_index]==var_index);
aux_type=M_.aux_vars(aux_index).type;
if lead_lag==0
str = subst_auxvar(var_index, [], M_);
else
str = subst_auxvar(var_index, lead_lag, M_);
end
aux_orig_expression=M_.aux_vars(aux_index).orig_expr;
if isempty(aux_orig_expression)
fprintf('%s\n',str);
else
fprintf('%s (original expression %s) \n',str,aux_orig_expression);
end
end
end
function ret=Sym_type(type)
UNKNOWN=0;
EVALUATE_FORWARD=1;
EVALUATE_BACKWARD=2;
SOLVE_FORWARD_SIMPLE=3;
SOLVE_BACKWARD_SIMPLE=4;
SOLVE_TWO_BOUNDARIES_SIMPLE=5;
SOLVE_FORWARD_COMPLETE=6;
SOLVE_BACKWARD_COMPLETE=7;
SOLVE_TWO_BOUNDARIES_COMPLETE=8;
EVALUATE_FORWARD_R=9;
EVALUATE_BACKWARD_R=10;
switch (type)
case (UNKNOWN)
ret='UNKNOWN ';
case {EVALUATE_FORWARD,EVALUATE_FORWARD_R}
ret='EVALUATE FORWARD ';
case {EVALUATE_BACKWARD,EVALUATE_BACKWARD_R}
ret='EVALUATE BACKWARD ';
case SOLVE_FORWARD_SIMPLE
ret='SOLVE FORWARD SIMPLE ';
case SOLVE_BACKWARD_SIMPLE
ret='SOLVE BACKWARD SIMPLE ';
case SOLVE_TWO_BOUNDARIES_SIMPLE
ret='SOLVE TWO BOUNDARIES SIMPLE ';
case SOLVE_FORWARD_COMPLETE
ret='SOLVE FORWARD COMPLETE ';
case SOLVE_BACKWARD_COMPLETE
ret='SOLVE BACKWARD COMPLETE ';
case SOLVE_TWO_BOUNDARIES_COMPLETE
ret='SOLVE TWO BOUNDARIES COMPLETE';
end
end
function ret = barre(n)
s = [];
for i=1:n
s = [s '|'];
end
ret = s;
end
|