1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
function [LIK,lik] = auxiliary_particle_filter(ReducedForm,Y,start,ParticleOptions,ThreadsOptions, options_, M_)
% [LIK,lik] = auxiliary_particle_filter(ReducedForm,Y,start,ParticleOptions,ThreadsOptions, options_, M_)
% Evaluates the likelihood of a nonlinear model with the auxiliary particle filter
% allowing eventually resampling.
%
% Copyright © 2011-2023 Dynare Team
%
% This file is part of Dynare (particles module).
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare particles module is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
% Set default
if isempty(start)
start = 1;
end
% Get perturbation order
order = options_.order;
% Set flag for prunning
pruning = ParticleOptions.pruning;
% Get steady state and mean.
steadystate = ReducedForm.steadystate;
constant = ReducedForm.constant;
state_variables_steady_state = ReducedForm.state_variables_steady_state;
mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
sample_size = size(Y,2);
number_of_state_variables = length(mf0);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);
number_of_particles = ParticleOptions.number_of_particles;
if ReducedForm.use_k_order_solver
dr = ReducedForm.dr;
udr = ReducedForm.udr;
else
% Set local state space model (first order approximation).
ghx = ReducedForm.ghx;
ghu = ReducedForm.ghu;
% Set local state space model (second order approximation).
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;
ghs2 = ReducedForm.ghs2;
if (order == 3)
% Set local state space model (third order approximation).
ghxxx = ReducedForm.ghxxx;
ghuuu = ReducedForm.ghuuu;
ghxxu = ReducedForm.ghxxu;
ghxuu = ReducedForm.ghxuu;
ghxss = ReducedForm.ghxss;
ghuss = ReducedForm.ghuss;
end
end
% Get covariance matrices
Q = ReducedForm.Q;
H = ReducedForm.H;
% Get initial condition for the state vector.
StateVectorMean = ReducedForm.StateVectorMean;
StateVectorVarianceSquareRoot = chol(ReducedForm.StateVectorVariance)';
state_variance_rank = size(StateVectorVarianceSquareRoot,2);
Q_lower_triangular_cholesky = chol(Q)';
% Set seed for randn().
options_=set_dynare_seed_local_options(options_,'default');
% Initialization of the likelihood.
const_lik = log(2*pi)*number_of_observed_variables+log(det(H));
lik = NaN(sample_size,1);
LIK = NaN;
% Initialization of the weights across particles.
weights = ones(1,number_of_particles)/number_of_particles ;
StateVectors = bsxfun(@plus,StateVectorVarianceSquareRoot*randn(state_variance_rank,number_of_particles),StateVectorMean);
%StateVectors = bsxfun(@plus,zeros(state_variance_rank,number_of_particles),StateVectorMean);
if pruning
if order == 2
StateVectors_ = StateVectors;
state_variables_steady_state_ = state_variables_steady_state;
mf0_ = mf0;
elseif order == 3
StateVectors_ = repmat(StateVectors,3,1);
state_variables_steady_state_ = repmat(state_variables_steady_state,3,1);
mf0_ = repmat(mf0,1,3);
mask2 = number_of_state_variables+1:2*number_of_state_variables;
mask3 = 2*number_of_state_variables+1:3*number_of_state_variables;
mf0_(mask2) = mf0_(mask2)+size(ghx,1);
mf0_(mask3) = mf0_(mask3)+2*size(ghx,1);
else
error('Pruning is not available for orders > 3');
end
end
for t=1:sample_size
yhat = bsxfun(@minus,StateVectors,state_variables_steady_state);
if pruning
yhat_ = bsxfun(@minus,StateVectors_,state_variables_steady_state_);
if order == 2
tmp = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,ThreadsOptions.local_state_space_iteration_2);
elseif order == 3
tmp = local_state_space_iteration_3(yhat_, zeros(number_of_structural_innovations,number_of_particles), ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, ThreadsOptions.local_state_space_iteration_3, pruning);
else
error('Pruning is not available for orders > 3');
end
else
if ReducedForm.use_k_order_solver
tmp = local_state_space_iteration_k(yhat, zeros(number_of_structural_innovations,number_of_particles), dr, M_, options_, udr);
else
if order == 2
tmp = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,ThreadsOptions.local_state_space_iteration_2);
elseif order == 3
tmp = local_state_space_iteration_3(yhat, zeros(number_of_structural_innovations,number_of_particles), ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, ThreadsOptions.local_state_space_iteration_3, pruning);
else
error('Order > 3: use_k_order_solver should be set to true');
end
end
end
PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:));
z = sum(PredictionError.*(H\PredictionError),1) ;
% tau_tilde = weights.*(tpdf(z,3*ones(size(z)))+1e-99) ;
ddl = 3 ;
tau_tilde = weights.*(exp(gammaln((ddl + 1) / 2) - gammaln(ddl/2))./(sqrt(ddl*pi).*(1 + (z.^2)./ddl).^((ddl + 1)/2))+1e-99) ;
tau_tilde = tau_tilde/sum(tau_tilde) ;
indx = resample(0,tau_tilde',ParticleOptions);
if pruning
yhat_ = yhat_(:,indx) ;
end
yhat = yhat(:,indx) ;
weights_stage_1 = weights(indx)./tau_tilde(indx) ;
epsilon = Q_lower_triangular_cholesky*randn(number_of_structural_innovations,number_of_particles);
if pruning
if order == 2
[tmp, tmp_] = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,ThreadsOptions.local_state_space_iteration_2);
elseif order == 3
[tmp, tmp_] = local_state_space_iteration_3(yhat_, epsilon, ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, ThreadsOptions.local_state_space_iteration_3, pruning);
else
error('Pruning is not available for orders > 3');
end
StateVectors_ = tmp_(mf0_,:);
else
if ReducedForm.use_k_order_solver
tmp = local_state_space_iteration_k(yhat, epsilon, dr, M_, options_, udr);
else
if order == 2
tmp = local_state_space_iteration_2(yhat, epsilon, ghx, ghu, constant, ghxx, ghuu, ghxu, ThreadsOptions.local_state_space_iteration_2);
elseif order == 3
tmp = local_state_space_iteration_3(yhat, epsilon, ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, ThreadsOptions.local_state_space_iteration_3, pruning);
else
error('Order > 3: use_k_order_solver should be set to true');
end
end
end
StateVectors = tmp(mf0,:);
PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:));
weights_stage_2 = weights_stage_1.*(exp(-.5*(const_lik+sum(PredictionError.*(H\PredictionError),1))) + 1e-99) ;
lik(t) = log(mean(weights_stage_2)) ;
weights = weights_stage_2/sum(weights_stage_2);
if (ParticleOptions.resampling.status.generic && neff(weights)<ParticleOptions.resampling.threshold*sample_size) || ParticleOptions.resampling.status.systematic
if pruning
temp = resample([StateVectors' StateVectors_'],weights',ParticleOptions);
StateVectors = temp(:,1:number_of_state_variables)';
StateVectors_ = temp(:,number_of_state_variables+1:end)';
else
StateVectors = resample(StateVectors',weights',ParticleOptions)';
end
weights = ones(1,number_of_particles)/number_of_particles;
end
end
LIK = -sum(lik(start:end));
|