1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
function [ProposalStateVector, Weights, flag] = conditional_filter_proposal(ReducedForm, y, StateVectors, SampleWeights, Q_lower_triangular_cholesky, H_lower_triangular_cholesky, ...
H, ParticleOptions, ThreadsOptions, options_, M_)
% Computes the proposal for each past particle using Gaussian approximations
% for the state errors and the Kalman filter
%
% INPUTS
% - ReducedForm [structure] Matlab's structure describing the reduced form model.
% - y [double] p×1 vector, current observation (p is the number of observed variables).
% - StateVectors
% - SampleWeights
% - Q_lower_triangular_cholesky
% - H_lower_triangular_cholesky
% - H
% - ParticleOptions
% - ThreadsOptions
% - options_
% - M_
%
% OUTPUTS
% - ProposalStateVector
% - Weights
% - flag
% Copyright © 2012-2022 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
flag = false;
order = options_.order;
if ReducedForm.use_k_order_solver
dr = ReducedForm.dr;
udr = ReducedForm.udr;
else
% Set local state space model (first-order approximation).
ghx = ReducedForm.ghx;
ghu = ReducedForm.ghu;
% Set local state space model (second-order approximation).
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;
ghs2 = ReducedForm.ghs2;
if order == 3
% Set local state space model (third order approximation).
ghxxx = ReducedForm.ghxxx;
ghuuu = ReducedForm.ghuuu;
ghxxu = ReducedForm.ghxxu;
ghxuu = ReducedForm.ghxuu;
ghxss = ReducedForm.ghxss;
ghuss = ReducedForm.ghuss;
end
end
constant = ReducedForm.constant;
steadystate = ReducedForm.steadystate;
state_variables_steady_state = ReducedForm.state_variables_steady_state;
mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
number_of_state_variables = length(mf0);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);
if ParticleOptions.proposal_approximation.montecarlo
nodes = randn(ParticleOptions.number_of_particles/10, number_of_structural_innovations);
weights = 1.0/ParticleOptions.number_of_particles;
weights_c = weights;
elseif ParticleOptions.proposal_approximation.cubature
[nodes, weights] = spherical_radial_sigma_points(number_of_structural_innovations);
weights_c = weights;
elseif ParticleOptions.proposal_approximation.unscented
[nodes, weights, weights_c] = unscented_sigma_points(number_of_structural_innovations, ParticleOptions);
else
error('Estimation: This approximation for the proposal is not implemented or unknown!')
end
epsilon = Q_lower_triangular_cholesky*nodes';
yhat = repmat(StateVectors-state_variables_steady_state, 1, size(epsilon, 2));
if ReducedForm.use_k_order_solver
tmp = local_state_space_iteration_k(yhat, epsilon, dr, M_, options_, udr);
else
if order == 2
tmp = local_state_space_iteration_2(yhat, epsilon, ghx, ghu, constant, ghxx, ghuu, ghxu, ThreadsOptions.local_state_space_iteration_2);
elseif order == 3
tmp = local_state_space_iteration_3(yhat, epsilon, ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, ThreadsOptions.local_state_space_iteration_3, false);
else
error('Order > 3: use_k_order_solver should be set to true');
end
end
PredictedStateMean = tmp(mf0,:)*weights;
PredictedObservedMean = tmp(mf1,:)*weights;
if ParticleOptions.proposal_approximation.cubature || ParticleOptions.proposal_approximation.montecarlo
PredictedStateMean = sum(PredictedStateMean, 2);
PredictedObservedMean = sum(PredictedObservedMean, 2);
dState = bsxfun(@minus, tmp(mf0,:), PredictedStateMean)'.*sqrt(weights);
dObserved = bsxfun(@minus, tmp(mf1,:), PredictedObservedMean)'.*sqrt(weights);
PredictedStateVariance = dState*dState';
big_mat = [dObserved dState; H_lower_triangular_cholesky zeros(number_of_observed_variables,number_of_state_variables)];
[~, mat] = qr2(big_mat,0);
mat = mat';
PredictedObservedVarianceSquareRoot = mat(1:number_of_observed_variables, 1:number_of_observed_variables);
CovarianceObservedStateSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),1:number_of_observed_variables);
StateVectorVarianceSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),number_of_observed_variables+(1:number_of_state_variables));
Error = y-PredictedObservedMean;
StateVectorMean = PredictedStateMean+(CovarianceObservedStateSquareRoot/PredictedObservedVarianceSquareRoot)*Error;
if ParticleOptions.cpf_weights_method.amisanotristani
Weights = SampleWeights.*probability2(zeros(number_of_observed_variables,1), PredictedObservedVarianceSquareRoot, Error);
end
else
dState = bsxfun(@minus, tmp(mf0,:), PredictedStateMean);
dObserved = bsxfun(@minus, tmp(mf1,:), PredictedObservedMean);
PredictedStateVariance = dState*diag(weights_c)*dState';
PredictedObservedVariance = dObserved*diag(weights_c)*dObserved'+H;
PredictedStateAndObservedCovariance = dState*diag(weights_c)*dObserved';
KalmanFilterGain = PredictedStateAndObservedCovariance/PredictedObservedVariance;
Error = y-PredictedObservedMean;
StateVectorMean = PredictedStateMean+KalmanFilterGain*Error;
StateVectorVariance = PredictedStateVariance-KalmanFilterGain*PredictedObservedVariance*KalmanFilterGain';
StateVectorVariance = 0.5*(StateVectorVariance+StateVectorVariance');
[StateVectorVarianceSquareRoot, p] = chol(StateVectorVariance, 'lower') ;
if p
flag = true;
ProposalStateVector = zeros(number_of_state_variables, 1);
Weights = 0.0;
return
end
if ParticleOptions.cpf_weights_method.amisanotristani
Weights = SampleWeights.*probability2(zeros(number_of_observed_variables, 1), chol(PredictedObservedVariance)', Error);
end
end
ProposalStateVector = StateVectorVarianceSquareRoot*randn(size(StateVectorVarianceSquareRoot, 2), 1)+StateVectorMean;
if ParticleOptions.cpf_weights_method.murrayjonesparslow
PredictedStateVariance = 0.5*(PredictedStateVariance+PredictedStateVariance');
[PredictedStateVarianceSquareRoot, p] = chol(PredictedStateVariance, 'lower');
if p
flag = true;
ProposalStateVector = zeros(number_of_state_variables,1);
Weights = 0.0;
return
end
Prior = probability2(PredictedStateMean, PredictedStateVarianceSquareRoot, ProposalStateVector);
Posterior = probability2(StateVectorMean, StateVectorVarianceSquareRoot, ProposalStateVector);
Likelihood = probability2(y, H_lower_triangular_cholesky, measurement_equations(ProposalStateVector, ReducedForm, ThreadsOptions, options_, M_));
Weights = SampleWeights.*Likelihood.*(Prior./Posterior);
end
|