File: conditional_filter_proposal.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (164 lines) | stat: -rw-r--r-- 7,487 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
function [ProposalStateVector, Weights, flag] = conditional_filter_proposal(ReducedForm, y, StateVectors, SampleWeights, Q_lower_triangular_cholesky, H_lower_triangular_cholesky, ...
                                                  H, ParticleOptions, ThreadsOptions, options_, M_)

% Computes the proposal for each past particle using Gaussian approximations
% for the state errors and the Kalman filter
%
% INPUTS
% - ReducedForm                    [structure]    Matlab's structure describing the reduced form model.
% - y                              [double]       p×1 vector, current observation (p is the number of observed variables).
% - StateVectors
% - SampleWeights
% - Q_lower_triangular_cholesky
% - H_lower_triangular_cholesky
% - H
% - ParticleOptions
% - ThreadsOptions
% - options_
% - M_
%
% OUTPUTS
% - ProposalStateVector
% - Weights
% - flag

% Copyright © 2012-2022 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

flag = false;

order = options_.order;

if ReducedForm.use_k_order_solver
    dr = ReducedForm.dr;
    udr = ReducedForm.udr;
else
    % Set local state space model (first-order approximation).
    ghx  = ReducedForm.ghx;
    ghu  = ReducedForm.ghu;
    % Set local state space model (second-order approximation).
    ghxx = ReducedForm.ghxx;
    ghuu = ReducedForm.ghuu;
    ghxu = ReducedForm.ghxu;
    ghs2 = ReducedForm.ghs2;
    if order == 3
        % Set local state space model (third order approximation).
        ghxxx = ReducedForm.ghxxx;
        ghuuu = ReducedForm.ghuuu;
        ghxxu = ReducedForm.ghxxu;
        ghxuu = ReducedForm.ghxuu;
        ghxss = ReducedForm.ghxss;
        ghuss = ReducedForm.ghuss;
    end
end

constant = ReducedForm.constant;
steadystate = ReducedForm.steadystate;
state_variables_steady_state = ReducedForm.state_variables_steady_state;

mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
number_of_state_variables = length(mf0);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);

if ParticleOptions.proposal_approximation.montecarlo
    nodes = randn(ParticleOptions.number_of_particles/10, number_of_structural_innovations);
    weights = 1.0/ParticleOptions.number_of_particles;
    weights_c = weights;
elseif ParticleOptions.proposal_approximation.cubature
    [nodes, weights] = spherical_radial_sigma_points(number_of_structural_innovations);
    weights_c = weights;
elseif ParticleOptions.proposal_approximation.unscented
    [nodes, weights, weights_c] = unscented_sigma_points(number_of_structural_innovations, ParticleOptions);
else
    error('Estimation: This approximation for the proposal is not implemented or unknown!')
end

epsilon = Q_lower_triangular_cholesky*nodes';
yhat = repmat(StateVectors-state_variables_steady_state, 1, size(epsilon, 2));

if ReducedForm.use_k_order_solver
    tmp = local_state_space_iteration_k(yhat, epsilon, dr, M_, options_, udr);
else
    if order == 2
        tmp = local_state_space_iteration_2(yhat, epsilon, ghx, ghu, constant, ghxx, ghuu, ghxu, ThreadsOptions.local_state_space_iteration_2);
    elseif order == 3
        tmp = local_state_space_iteration_3(yhat, epsilon, ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, ThreadsOptions.local_state_space_iteration_3, false);
    else
        error('Order > 3: use_k_order_solver should be set to true');
    end
end

PredictedStateMean = tmp(mf0,:)*weights;
PredictedObservedMean = tmp(mf1,:)*weights;

if ParticleOptions.proposal_approximation.cubature || ParticleOptions.proposal_approximation.montecarlo
    PredictedStateMean = sum(PredictedStateMean, 2);
    PredictedObservedMean = sum(PredictedObservedMean, 2);
    dState = bsxfun(@minus, tmp(mf0,:), PredictedStateMean)'.*sqrt(weights);
    dObserved = bsxfun(@minus, tmp(mf1,:), PredictedObservedMean)'.*sqrt(weights);
    PredictedStateVariance = dState*dState';
    big_mat = [dObserved dState; H_lower_triangular_cholesky zeros(number_of_observed_variables,number_of_state_variables)];
    [~, mat] = qr2(big_mat,0);
    mat = mat';
    PredictedObservedVarianceSquareRoot = mat(1:number_of_observed_variables, 1:number_of_observed_variables);
    CovarianceObservedStateSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),1:number_of_observed_variables);
    StateVectorVarianceSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),number_of_observed_variables+(1:number_of_state_variables));
    Error = y-PredictedObservedMean;
    StateVectorMean = PredictedStateMean+(CovarianceObservedStateSquareRoot/PredictedObservedVarianceSquareRoot)*Error;
    if ParticleOptions.cpf_weights_method.amisanotristani
        Weights = SampleWeights.*probability2(zeros(number_of_observed_variables,1), PredictedObservedVarianceSquareRoot, Error);
    end
else
    dState = bsxfun(@minus, tmp(mf0,:), PredictedStateMean);
    dObserved = bsxfun(@minus, tmp(mf1,:), PredictedObservedMean);
    PredictedStateVariance = dState*diag(weights_c)*dState';
    PredictedObservedVariance = dObserved*diag(weights_c)*dObserved'+H;
    PredictedStateAndObservedCovariance = dState*diag(weights_c)*dObserved';
    KalmanFilterGain = PredictedStateAndObservedCovariance/PredictedObservedVariance;
    Error = y-PredictedObservedMean;
    StateVectorMean = PredictedStateMean+KalmanFilterGain*Error;
    StateVectorVariance = PredictedStateVariance-KalmanFilterGain*PredictedObservedVariance*KalmanFilterGain';
    StateVectorVariance = 0.5*(StateVectorVariance+StateVectorVariance');
    [StateVectorVarianceSquareRoot, p] = chol(StateVectorVariance, 'lower') ;
    if p
        flag = true;
        ProposalStateVector = zeros(number_of_state_variables, 1);
        Weights = 0.0;
        return
    end
    if ParticleOptions.cpf_weights_method.amisanotristani
        Weights = SampleWeights.*probability2(zeros(number_of_observed_variables, 1), chol(PredictedObservedVariance)', Error);
    end
end

ProposalStateVector = StateVectorVarianceSquareRoot*randn(size(StateVectorVarianceSquareRoot, 2), 1)+StateVectorMean;
if ParticleOptions.cpf_weights_method.murrayjonesparslow
    PredictedStateVariance = 0.5*(PredictedStateVariance+PredictedStateVariance');
    [PredictedStateVarianceSquareRoot, p] = chol(PredictedStateVariance, 'lower');
    if p
        flag = true;
        ProposalStateVector = zeros(number_of_state_variables,1);
        Weights = 0.0;
        return
    end
    Prior = probability2(PredictedStateMean, PredictedStateVarianceSquareRoot, ProposalStateVector);
    Posterior = probability2(StateVectorMean, StateVectorVarianceSquareRoot, ProposalStateVector);
    Likelihood = probability2(y, H_lower_triangular_cholesky, measurement_equations(ProposalStateVector, ReducedForm, ThreadsOptions, options_, M_));
    Weights = SampleWeights.*Likelihood.*(Prior./Posterior);
end