File: fit_gaussian_mixture.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (51 lines) | stat: -rw-r--r-- 1,829 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
function [StateMu,StateSqrtP,StateWeights] = fit_gaussian_mixture(X,X_weights,StateMu,StateSqrtP,StateWeights,crit,niters,check)

% Copyright © 2013-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

[~,Ndata] = size(X);
M = size(StateMu,2) ;
if check                        % Ensure that covariances don't collapse
    MIN_COVAR_SQRT = sqrt(eps);
    init_covars = StateSqrtP;
end
eold = -Inf;
for n=1:niters
    % Calculate posteriors based on old parameters
    [~,~,marginal,posterior] = probability3(StateMu,StateSqrtP,StateWeights,X,X_weights);
    e = sum(log(marginal));
    if (n > 1 && abs((e - eold)/eold) < crit)
        return;
    else
        eold = e;
    end
    new_pr = (sum(posterior,2))';
    StateWeights = new_pr/Ndata;
    StateMu = bsxfun(@rdivide,(posterior*X')',new_pr);
    for j=1:M
        diffs = bsxfun(@minus,X,StateMu(:,j));
        tpost = (1/sqrt(new_pr(j)))*sqrt(posterior(j,:));
        diffs = bsxfun(@times,diffs,tpost);
        [~,tcov] = qr2(diffs',0);
        StateSqrtP(:,:,j) = tcov';
        if check
            if min(abs(diag(StateSqrtP(:,:,j)))) < MIN_COVAR_SQRT
                StateSqrtP(:,:,j) = init_covars(:,:,j);
            end
        end
    end
end