File: gaussian_filter_bank.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (139 lines) | stat: -rw-r--r-- 7,176 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
function [PredictedStateMean, PredictedStateVarianceSquareRoot, StateVectorMean, StateVectorVarianceSquareRoot] = ...
    gaussian_filter_bank(ReducedForm, obs, StateVectorMean, StateVectorVarianceSquareRoot, Q_lower_triangular_cholesky, H_lower_triangular_cholesky, H, ...
                         ParticleOptions, ThreadsOptions, options_, M_)
%
% Computes the proposal with a gaussian approximation for importance
% sampling
% This proposal is a gaussian distribution calculated à la Kalman
%
% INPUTS
%    reduced_form_model     [structure] Matlab's structure describing the reduced form model.
%                                       reduced_form_model.measurement.H   [double]   (pp x pp) variance matrix of measurement errors.
%                                       reduced_form_model.state.Q         [double]   (qq x qq) variance matrix of state errors.
%                                       reduced_form_model.state.dr        [structure] output of resol.m.
%    Y                      [double]    pp*smpl matrix of (detrended) data, where pp is the maximum number of observed variables.
%
% OUTPUTS
%    LIK        [double]    scalar, likelihood
%    lik        [double]    vector, density of observations in each period.
%
% REFERENCES
%
% NOTES
%   The vector "lik" is used to evaluate the jacobian of the likelihood.

% Copyright © 2009-2022 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

order = options_.order;

if ReducedForm.use_k_order_solver
    dr = ReducedForm.dr;
    udr = ReducedForm.udr;
else
    % Set local state space model (first-order approximation).
    ghx  = ReducedForm.ghx;
    ghu  = ReducedForm.ghu;
    % Set local state space model (second-order approximation).
    ghxx = ReducedForm.ghxx;
    ghuu = ReducedForm.ghuu;
    ghxu = ReducedForm.ghxu;
    ghs2 = ReducedForm.ghs2;
    if order == 3
        % Set local state space model (third order approximation).
        ghxxx = ReducedForm.ghxxx;
        ghuuu = ReducedForm.ghuuu;
        ghxxu = ReducedForm.ghxxu;
        ghxuu = ReducedForm.ghxuu;
        ghxss = ReducedForm.ghxss;
        ghuss = ReducedForm.ghuss;
    end
end

constant = ReducedForm.constant;
steadystate = ReducedForm.steadystate;
state_variables_steady_state = ReducedForm.state_variables_steady_state;

mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
number_of_state_variables = length(mf0);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);

if ParticleOptions.proposal_approximation.montecarlo
    nodes = randn(ParticleOptions.number_of_particles, number_of_state_variables+number_of_structural_innovations) ;
    weights = 1/ParticleOptions.number_of_particles ;
    weights_c = weights ;
elseif ParticleOptions.proposal_approximation.cubature 
    [nodes,weights] = spherical_radial_sigma_points(number_of_state_variables+number_of_structural_innovations) ;
    weights_c = weights ;
elseif ParticleOptions.proposal_approximation.unscented
    [nodes,weights,weights_c] = unscented_sigma_points(number_of_state_variables+number_of_structural_innovations, ParticleOptions);
else
    error('This approximation for the proposal is not implemented or unknown!')
end

xbar = [StateVectorMean ; zeros(number_of_structural_innovations,1)] ;
sqr_Px = [ StateVectorVarianceSquareRoot, zeros(number_of_state_variables, number_of_structural_innovations); 
           zeros(number_of_structural_innovations, number_of_state_variables) Q_lower_triangular_cholesky];
sigma_points = bsxfun(@plus, xbar, sqr_Px*(nodes'));
StateVectors = sigma_points(1:number_of_state_variables,:);
epsilon = sigma_points(number_of_state_variables+1:number_of_state_variables+number_of_structural_innovations,:);
yhat = bsxfun(@minus, StateVectors, state_variables_steady_state);
if ReducedForm.use_k_order_solver
    tmp = local_state_space_iteration_k(yhat, epsilon, dr, M_, options_, udr);
else
    if order == 2
        tmp = local_state_space_iteration_2(yhat, epsilon, ghx, ghu, constant, ghxx, ghuu, ghxu, ThreadsOptions.local_state_space_iteration_2);
    elseif order == 3
        tmp = local_state_space_iteration_3(yhat, epsilon, ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, ThreadsOptions.local_state_space_iteration_3, false);
    else
        error('Order > 3: use_k_order_solver should be set to true');
    end
end

PredictedStateMean = tmp(mf0,:)*weights;
PredictedObservedMean = tmp(mf1,:)*weights;

if ParticleOptions.proposal_approximation.cubature || ParticleOptions.proposal_approximation.montecarlo
    PredictedStateMean = sum(PredictedStateMean, 2);
    PredictedObservedMean = sum(PredictedObservedMean, 2);
    dState = bsxfun(@minus,tmp(mf0,:), PredictedStateMean)'.*sqrt(weights);
    dObserved = bsxfun(@minus, tmp(mf1,:), PredictedObservedMean)'.*sqrt(weights);
    PredictedStateVarianceSquareRoot = chol(dState'*dState)';
    big_mat = [dObserved, dState ; H_lower_triangular_cholesky, zeros(number_of_observed_variables,number_of_state_variables)];
    [~, mat] = qr2(big_mat, 0);
    mat = mat';
    PredictedObservedVarianceSquareRoot = mat(1:number_of_observed_variables,1:number_of_observed_variables);
    CovarianceObservedStateSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),1:number_of_observed_variables);
    StateVectorVarianceSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),number_of_observed_variables+(1:number_of_state_variables));
    PredictionError = obs - PredictedObservedMean;
    StateVectorMean = PredictedStateMean + (CovarianceObservedStateSquareRoot/PredictedObservedVarianceSquareRoot)*PredictionError;
else
    dState = bsxfun(@minus, tmp(mf0,:), PredictedStateMean);
    dObserved = bsxfun(@minus, tmp(mf1,:), PredictedObservedMean);
    PredictedStateVariance = dState*diag(weights_c)*dState';
    PredictedObservedVariance = dObserved*diag(weights_c)*dObserved' + H;
    PredictedStateAndObservedCovariance = dState*diag(weights_c)*dObserved';
    PredictedStateVarianceSquareRoot = chol(PredictedStateVariance)';
    PredictionError = obs - PredictedObservedMean;
    KalmanFilterGain = PredictedStateAndObservedCovariance/PredictedObservedVariance;
    StateVectorMean = PredictedStateMean + KalmanFilterGain*PredictionError;
    StateVectorVariance = PredictedStateVariance - KalmanFilterGain*PredictedObservedVariance*KalmanFilterGain';
    StateVectorVariance = .5*(StateVectorVariance+StateVectorVariance');
    StateVectorVarianceSquareRoot = reduced_rank_cholesky(StateVectorVariance)';
end