1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
function [PredictedStateMean, PredictedStateVarianceSquareRoot, StateVectorMean, StateVectorVarianceSquareRoot] = ...
gaussian_filter_bank(ReducedForm, obs, StateVectorMean, StateVectorVarianceSquareRoot, Q_lower_triangular_cholesky, H_lower_triangular_cholesky, H, ...
ParticleOptions, ThreadsOptions, options_, M_)
%
% Computes the proposal with a gaussian approximation for importance
% sampling
% This proposal is a gaussian distribution calculated à la Kalman
%
% INPUTS
% reduced_form_model [structure] Matlab's structure describing the reduced form model.
% reduced_form_model.measurement.H [double] (pp x pp) variance matrix of measurement errors.
% reduced_form_model.state.Q [double] (qq x qq) variance matrix of state errors.
% reduced_form_model.state.dr [structure] output of resol.m.
% Y [double] pp*smpl matrix of (detrended) data, where pp is the maximum number of observed variables.
%
% OUTPUTS
% LIK [double] scalar, likelihood
% lik [double] vector, density of observations in each period.
%
% REFERENCES
%
% NOTES
% The vector "lik" is used to evaluate the jacobian of the likelihood.
% Copyright © 2009-2022 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
order = options_.order;
if ReducedForm.use_k_order_solver
dr = ReducedForm.dr;
udr = ReducedForm.udr;
else
% Set local state space model (first-order approximation).
ghx = ReducedForm.ghx;
ghu = ReducedForm.ghu;
% Set local state space model (second-order approximation).
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;
ghs2 = ReducedForm.ghs2;
if order == 3
% Set local state space model (third order approximation).
ghxxx = ReducedForm.ghxxx;
ghuuu = ReducedForm.ghuuu;
ghxxu = ReducedForm.ghxxu;
ghxuu = ReducedForm.ghxuu;
ghxss = ReducedForm.ghxss;
ghuss = ReducedForm.ghuss;
end
end
constant = ReducedForm.constant;
steadystate = ReducedForm.steadystate;
state_variables_steady_state = ReducedForm.state_variables_steady_state;
mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
number_of_state_variables = length(mf0);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);
if ParticleOptions.proposal_approximation.montecarlo
nodes = randn(ParticleOptions.number_of_particles, number_of_state_variables+number_of_structural_innovations) ;
weights = 1/ParticleOptions.number_of_particles ;
weights_c = weights ;
elseif ParticleOptions.proposal_approximation.cubature
[nodes,weights] = spherical_radial_sigma_points(number_of_state_variables+number_of_structural_innovations) ;
weights_c = weights ;
elseif ParticleOptions.proposal_approximation.unscented
[nodes,weights,weights_c] = unscented_sigma_points(number_of_state_variables+number_of_structural_innovations, ParticleOptions);
else
error('This approximation for the proposal is not implemented or unknown!')
end
xbar = [StateVectorMean ; zeros(number_of_structural_innovations,1)] ;
sqr_Px = [ StateVectorVarianceSquareRoot, zeros(number_of_state_variables, number_of_structural_innovations);
zeros(number_of_structural_innovations, number_of_state_variables) Q_lower_triangular_cholesky];
sigma_points = bsxfun(@plus, xbar, sqr_Px*(nodes'));
StateVectors = sigma_points(1:number_of_state_variables,:);
epsilon = sigma_points(number_of_state_variables+1:number_of_state_variables+number_of_structural_innovations,:);
yhat = bsxfun(@minus, StateVectors, state_variables_steady_state);
if ReducedForm.use_k_order_solver
tmp = local_state_space_iteration_k(yhat, epsilon, dr, M_, options_, udr);
else
if order == 2
tmp = local_state_space_iteration_2(yhat, epsilon, ghx, ghu, constant, ghxx, ghuu, ghxu, ThreadsOptions.local_state_space_iteration_2);
elseif order == 3
tmp = local_state_space_iteration_3(yhat, epsilon, ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, ThreadsOptions.local_state_space_iteration_3, false);
else
error('Order > 3: use_k_order_solver should be set to true');
end
end
PredictedStateMean = tmp(mf0,:)*weights;
PredictedObservedMean = tmp(mf1,:)*weights;
if ParticleOptions.proposal_approximation.cubature || ParticleOptions.proposal_approximation.montecarlo
PredictedStateMean = sum(PredictedStateMean, 2);
PredictedObservedMean = sum(PredictedObservedMean, 2);
dState = bsxfun(@minus,tmp(mf0,:), PredictedStateMean)'.*sqrt(weights);
dObserved = bsxfun(@minus, tmp(mf1,:), PredictedObservedMean)'.*sqrt(weights);
PredictedStateVarianceSquareRoot = chol(dState'*dState)';
big_mat = [dObserved, dState ; H_lower_triangular_cholesky, zeros(number_of_observed_variables,number_of_state_variables)];
[~, mat] = qr2(big_mat, 0);
mat = mat';
PredictedObservedVarianceSquareRoot = mat(1:number_of_observed_variables,1:number_of_observed_variables);
CovarianceObservedStateSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),1:number_of_observed_variables);
StateVectorVarianceSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),number_of_observed_variables+(1:number_of_state_variables));
PredictionError = obs - PredictedObservedMean;
StateVectorMean = PredictedStateMean + (CovarianceObservedStateSquareRoot/PredictedObservedVarianceSquareRoot)*PredictionError;
else
dState = bsxfun(@minus, tmp(mf0,:), PredictedStateMean);
dObserved = bsxfun(@minus, tmp(mf1,:), PredictedObservedMean);
PredictedStateVariance = dState*diag(weights_c)*dState';
PredictedObservedVariance = dObserved*diag(weights_c)*dObserved' + H;
PredictedStateAndObservedCovariance = dState*diag(weights_c)*dObserved';
PredictedStateVarianceSquareRoot = chol(PredictedStateVariance)';
PredictionError = obs - PredictedObservedMean;
KalmanFilterGain = PredictedStateAndObservedCovariance/PredictedObservedVariance;
StateVectorMean = PredictedStateMean + KalmanFilterGain*PredictionError;
StateVectorVariance = PredictedStateVariance - KalmanFilterGain*PredictedObservedVariance*KalmanFilterGain';
StateVectorVariance = .5*(StateVectorVariance+StateVectorVariance');
StateVectorVarianceSquareRoot = reduced_rank_cholesky(StateVectorVariance)';
end
|