File: gaussian_mixture_filter.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (226 lines) | stat: -rw-r--r-- 11,021 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
function [LIK, lik] = gaussian_mixture_filter(ReducedForm, Y, start, ParticleOptions, ThreadsOptions, options_, M_)

% Evaluates the likelihood of a non-linear model approximating the state
% variables distributions with gaussian mixtures. Gaussian Mixture allows reproducing
% a wide variety of generalized distributions (when multimodal for instance).
% Each gaussian distribution is obtained whether
%   - with a radial-spherical cubature
%   - with scaled unscented sigma-points
% A Sparse grid Kalman Filter is implemented on each component of the mixture,
% which confers it a weight about current information.
% Information on the current observables is then embodied in the proposal
% distribution in which we draw particles, which allows
%   - reaching a greater precision relatively to a standard particle filter,
%   - reducing the number of particles needed,
%   - still being faster.
%
%
% INPUTS
%    reduced_form_model     [structure] Matlab's structure describing the reduced form model.
%                                       reduced_form_model.measurement.H   [double]   (pp x pp) variance matrix of measurement errors.
%                                       reduced_form_model.state.Q         [double]   (qq x qq) variance matrix of state errors.
%                                       reduced_form_model.state.dr        [structure] output of resol.m.
%    Y                      [double]    pp*smpl matrix of (detrended) data, where pp is the maximum number of observed variables.
%    start                  [integer]   scalar, likelihood evaluation starts at 'start'.
%
% OUTPUTS
%    LIK        [double]    scalar, likelihood
%    lik        [double]    vector, density of observations in each period.
%
% REFERENCES
%
% Van der Meerwe & Wan, Gaussian Mixture Sigma-Point Particle Filters for Sequential
% Probabilistic Inference in Dynamic State-Space Models.
% Heiss & Winschel, 2010, Journal of Applied Economics.
% Winschel & Kratzig, 2010, Econometrica.
%
% NOTES
%   The vector "lik" is used to evaluate the jacobian of the likelihood.
% Copyright © 2009-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

% Set default
if isempty(start)
    start = 1;
end

mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
sample_size = size(Y,2);
number_of_state_variables = length(mf0);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);
G = ParticleOptions.mixture_state_variables;           % number of GM components in state
number_of_particles = ParticleOptions.number_of_particles;

% compute gaussian quadrature nodes and weights on states and shocks
if ParticleOptions.distribution_approximation.cubature
    [nodes, weights] = spherical_radial_sigma_points(number_of_state_variables);
elseif ParticleOptions.distribution_approximation.unscented
    [nodes, weights] = unscented_sigma_points(number_of_state_variables, ParticleOptions);
else
    if ~ParticleOptions.distribution_approximation.montecarlo
        error('This approximation for the proposal is unknown!')
    end
end

if ParticleOptions.distribution_approximation.montecarlo
    options_=set_dynare_seed_local_options(options_,'default');
end

% Get covariance matrices
Q = ReducedForm.Q;
H = ReducedForm.H;
if isempty(H)
    H = 0;
    H_lower_triangular_cholesky = 0;
else
    H_lower_triangular_cholesky = reduced_rank_cholesky(H)';
end
Q_lower_triangular_cholesky = reduced_rank_cholesky(Q)';

% Initialize mixtures
StateWeights = ones(1, G)/G;
StateMu = ReducedForm.StateVectorMean;
StateSqrtP = zeros(number_of_state_variables, number_of_state_variables, G);
temp = reduced_rank_cholesky(ReducedForm.StateVectorVariance)';
StateMu = bsxfun(@plus, StateMu, bsxfun(@times,diag(temp), (-(G-1)/2:1:(G-1)/2))/10);
for g=1:G
    StateSqrtP(:,:,g) = temp/sqrt(G) ;
end

if ~ParticleOptions.mixture_structural_shocks
    StructuralShocksMu = zeros(1, number_of_structural_innovations);
    StructuralShocksWeights = 1;
    I = 1;
    StructuralShocksMu = Q_lower_triangular_cholesky*StructuralShocksMu';
    StructuralShocksSqrtP = zeros(number_of_structural_innovations, number_of_structural_innovations, I);
    StructuralShocksSqrtP(:,:,1) = Q_lower_triangular_cholesky;
elseif ParticleOptions.mixture_structural_shocks==1
    if ParticleOptions.proposal_approximation.cubature
        [StructuralShocksMu, StructuralShocksWeights] = spherical_radial_sigma_points(number_of_structural_innovations);
        StructuralShocksWeights = ones(size(StructuralShocksMu, 1), 1)*StructuralShocksWeights;
    elseif ParticleOptions.proposal_approximation.unscented
        [StructuralShocksMu, StructuralShocksWeights] = unscented_sigma_points(number_of_structural_innovations, ParticleOptions);
    else
        if ~ParticleOptions.distribution_approximation.montecarlo
            error('This approximation for the proposal is unknown!')
        end
    end
    I = size(StructuralShocksWeights, 1);
    StructuralShocksMu = Q_lower_triangular_cholesky*StructuralShocksMu';
    StructuralShocksSqrtP = zeros(number_of_structural_innovations, number_of_structural_innovations, I);
    for i=1:I
        StructuralShocksSqrtP(:,:,i) = Q_lower_triangular_cholesky;
    end
else
    if ParticleOptions.proposal_approximation.cubature
        [StructuralShocksMu, StructuralShocksWeights] = spherical_radial_sigma_points(number_of_structural_innovations);
        StructuralShocksWeights = ones(size(StructuralShocksMu, 1), 1)*StructuralShocksWeights ;
    elseif ParticleOptions.proposal_approximation.unscented
        [StructuralShocksMu, StructuralShocksWeights] = unscented_sigma_points(number_of_structural_innovations, ParticleOptions);
    else
        if ~ParticleOptions.distribution_approximation.montecarlo
            error('This approximation for the proposal is unknown!')
        end
    end
    I = size(StructuralShocksWeights, 1);
    StructuralShocksMu = Q_lower_triangular_cholesky*StructuralShocksMu';
    StructuralShocksSqrtP = zeros(number_of_structural_innovations, number_of_structural_innovations, I);
    for i=1:I
        StructuralShocksSqrtP(:,:,i) = Q_lower_triangular_cholesky/sqrt(StructuralShocksWeights(i));
    end
end

ObservationShocksWeights = 1;
J = 1 ;

Gprime = G*I;
Gsecond = G*I*J;
SampleWeights = ones(Gsecond, 1)/Gsecond;

StateWeightsPrior = zeros(1,Gprime);
StateMuPrior = zeros(number_of_state_variables,Gprime);
StateSqrtPPrior = zeros(number_of_state_variables, number_of_state_variables, Gprime);

StateWeightsPost = zeros(1, Gsecond);
StateMuPost = zeros(number_of_state_variables, Gsecond);
StateSqrtPPost = zeros(number_of_state_variables, number_of_state_variables, Gsecond);

const_lik = (2*pi)^(.5*number_of_observed_variables);

lik  = NaN(sample_size, 1);
LIK  = NaN;
for t=1:sample_size
    % Build the proposal joint quadratures of Gaussian on states, structural
    % shocks and observation shocks based on each combination of mixtures
    for i=1:I
        for j=1:J
            for g=1:G
                gprime = g + (i-1)*G;
                gsecond = gprime + (j-1)*Gprime;
                [StateMuPrior(:,gprime), StateSqrtPPrior(:,:,gprime), StateWeightsPrior(1,gprime), ...
                 StateMuPost(:,gsecond), StateSqrtPPost(:,:,gsecond), StateWeightsPost(1,gsecond)] = ...
                    gaussian_mixture_filter_bank(ReducedForm,Y(:,t), StateMu(:,g), StateSqrtP(:,:,g), StateWeights(g),...
                                                 StructuralShocksMu(:,i), StructuralShocksSqrtP(:,:,i), StructuralShocksWeights(i),...
                                                 ObservationShocksWeights(j), H, H_lower_triangular_cholesky, const_lik, ...
                                                 ParticleOptions, ThreadsOptions, options_, M_);
            end
        end
    end

    % Normalize weights
    StateWeightsPrior = StateWeightsPrior/sum(StateWeightsPrior, 2);
    StateWeightsPost = StateWeightsPost/sum(StateWeightsPost, 2);

    if ParticleOptions.distribution_approximation.cubature || ParticleOptions.distribution_approximation.unscented
        for i=1:Gsecond
            StateParticles = bsxfun(@plus, StateMuPost(:,i), StateSqrtPPost(:,:,i)*nodes');
            IncrementalWeights = gaussian_mixture_densities(Y(:,t), StateMuPrior, StateSqrtPPrior, StateWeightsPrior, ...
                                                            StateMuPost, StateSqrtPPost, StateWeightsPost, StateParticles, H, ...
                                                            ReducedForm, ThreadsOptions, options_, M_);
            SampleWeights(i) = sum(StateWeightsPost(i)*weights.*IncrementalWeights);
        end
        SumSampleWeights = sum(SampleWeights);
        lik(t) = log(SumSampleWeights);
        SampleWeights = SampleWeights./SumSampleWeights;
        [~, SortedRandomIndx] = sort(rand(1,Gsecond));
        SortedRandomIndx = SortedRandomIndx(1:G);
        indx = resample(0,SampleWeights,ParticleOptions);
        indx = indx(SortedRandomIndx);
        StateMu = StateMuPost(:,indx);
        StateSqrtP = StateSqrtPPost(:,:,indx);
        StateWeights = ones(1,G)/G;
    else
        % Sample particle in the proposal distribution, ie the posterior state GM
        StateParticles = importance_sampling(StateMuPost,StateSqrtPPost,StateWeightsPost',number_of_particles);
        IncrementalWeights = gaussian_mixture_densities(Y(:,t), StateMuPrior, StateSqrtPPrior, StateWeightsPrior, ...
                                                        StateMuPost, StateSqrtPPost, StateWeightsPost, StateParticles, H, ...
                                                        ReducedForm, ThreadsOptions, options_, M_);
        SampleWeights = IncrementalWeights/number_of_particles;
        SumSampleWeights = sum(SampleWeights,1);
        SampleWeights = SampleWeights./SumSampleWeights;
        lik(t) = log(SumSampleWeights);
        if (ParticleOptions.resampling.status.generic && neff(SampleWeights)<ParticleOptions.resampling.threshold*sample_size) || ParticleOptions.resampling.status.systematic
            StateParticles = resample(StateParticles',SampleWeights',ParticleOptions)';
            SampleWeights = ones(number_of_particles,1)/number_of_particles;
        end
        [StateMu, StateSqrtP, StateWeights] = fit_gaussian_mixture(StateParticles, SampleWeights', StateMu, StateSqrtP, StateWeights, 0.001, 10, 1);
    end
end

LIK = -sum(lik(start:end));