File: nonlinear_kalman_filter.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (182 lines) | stat: -rw-r--r-- 8,468 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
function [LIK,lik] = nonlinear_kalman_filter(ReducedForm, Y, start, ParticleOptions, ThreadsOptions, options_, M_)

% Evaluates the likelihood of a non-linear model approximating the
% predictive (prior) and filtered (posterior) densities for state variables
% by a Kalman filter.
% Gaussian distribution approximation is done by:
% - a spherical-radial cubature (ref: Arasaratnam & Haykin, 2009).
% - a scaled unscented transform cubature (ref: Julier & Uhlmann 1995)
% - Monte-Carlo draws from a multivariate gaussian distribution.
% First and second moments of prior and posterior state densities are computed
% from the resulting nodes/particles and allows to generate new distributions at the
% following observation.
% Pros: The use of nodes is much faster than Monte-Carlo Gaussian particle and standard particles
% filters since it treats a lesser number of particles.
% Cons: 1. Application a linear projection formulae in a nonlinear context.
% 2. Parameter estimations may be biaised if the model is truly non-gaussian since predictive and
% filtered densities are unimodal.
%
% INPUTS
%    Reduced_Form     [structure] Matlab's structure describing the reduced form model.
%    Y                [double]    matrix of original observed variables.
%    start            [double]    structural parameters.
%    ParticleOptions  [structure] Matlab's structure describing options concerning particle filtering.
%    ThreadsOptions   [structure] Matlab's structure.
%
% OUTPUTS
%    LIK        [double]    scalar, likelihood
%    lik        [double]    vector, density of observations in each period.
%
% REFERENCES
%
% NOTES
%   The vector "lik" is used to evaluate the jacobian of the likelihood.

% Copyright © 2009-2022 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

% Set default
if isempty(start)
    start = 1;
end

order = options_.order;

if ReducedForm.use_k_order_solver
    dr = ReducedForm.dr;
    udr = ReducedForm.udr;
else
    % Set local state space model (first-order approximation).
    ghx  = ReducedForm.ghx;
    ghu  = ReducedForm.ghu;
    % Set local state space model (second-order approximation).
    ghxx = ReducedForm.ghxx;
    ghuu = ReducedForm.ghuu;
    ghxu = ReducedForm.ghxu;
    ghs2 = ReducedForm.ghs2;
    if (order == 3)
        % Set local state space model (third order approximation).
        ghxxx = ReducedForm.ghxxx;
        ghuuu = ReducedForm.ghuuu;
        ghxxu = ReducedForm.ghxxu;
        ghxuu = ReducedForm.ghxuu;
        ghxss = ReducedForm.ghxss;
        ghuss = ReducedForm.ghuss;
    end
end

constant = ReducedForm.constant;
steadystate = ReducedForm.steadystate;
state_variables_steady_state = ReducedForm.state_variables_steady_state;

mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
sample_size = size(Y,2);
number_of_state_variables = length(mf0);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);

% compute gaussian quadrature nodes and weights on states and shocks
if ParticleOptions.proposal_approximation.montecarlo
    nodes = randn(ParticleOptions.number_of_particles,number_of_state_variables+number_of_structural_innovations);
    weights = 1/ParticleOptions.number_of_particles;
    weights_c = weights;
elseif ParticleOptions.proposal_approximation.cubature
    [nodes,weights] = spherical_radial_sigma_points(number_of_state_variables+number_of_structural_innovations);
    weights_c = weights;
elseif ParticleOptions.proposal_approximation.unscented
    [nodes,weights,weights_c] = unscented_sigma_points(number_of_state_variables+number_of_structural_innovations,ParticleOptions);
else
    error('Estimation: This approximation for the proposal is not implemented or unknown!')
end

if ParticleOptions.distribution_approximation.montecarlo
    options_=set_dynare_seed_local_options(options_,'default');
end

% Get covariance matrices
H = ReducedForm.H;
H_lower_triangular_cholesky = chol(H)' ;
Q_lower_triangular_cholesky = chol(ReducedForm.Q)';

% Get initial condition for the state vector.
StateVectorMean = ReducedForm.StateVectorMean;
StateVectorVarianceSquareRoot = chol(ReducedForm.StateVectorVariance)';

% Initialization of the likelihood.
lik  = NaN(sample_size,1);
LIK  = NaN;

for t=1:sample_size
    xbar = [StateVectorMean ; zeros(number_of_structural_innovations,1) ] ;
    sqr_Px = [StateVectorVarianceSquareRoot zeros(number_of_state_variables,number_of_structural_innovations);
               zeros(number_of_structural_innovations,number_of_state_variables) Q_lower_triangular_cholesky];
    sigma_points = bsxfun(@plus,xbar,sqr_Px*(nodes'));
    StateVectors = sigma_points(1:number_of_state_variables,:);
    epsilon = sigma_points(number_of_state_variables+1:number_of_state_variables+number_of_structural_innovations,:);
    yhat = bsxfun(@minus,StateVectors,state_variables_steady_state);
    if ReducedForm.use_k_order_solver
        tmp = local_state_space_iteration_k(yhat, epsilon, dr, M_, options_, udr);
    else
        if order == 2
            tmp = local_state_space_iteration_2(yhat, epsilon, ghx, ghu, constant, ghxx, ghuu, ghxu, ThreadsOptions.local_state_space_iteration_2);
        elseif order == 3
            tmp = local_state_space_iteration_3(yhat, epsilon, ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, ThreadsOptions.local_state_space_iteration_3, false);
        end
    end
    PredictedStateMean = tmp(mf0,:)*weights ;
    PredictedObservedMean = tmp(mf1,:)*weights;
    if ParticleOptions.proposal_approximation.cubature || ParticleOptions.proposal_approximation.montecarlo
        PredictedStateMean = sum(PredictedStateMean,2);
        PredictedObservedMean = sum(PredictedObservedMean,2);
        dState = bsxfun(@minus,tmp(mf0,:),PredictedStateMean)'.*sqrt(weights);
        dObserved = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean)'.*sqrt(weights);
        big_mat = [dObserved  dState ; [H_lower_triangular_cholesky zeros(number_of_observed_variables,number_of_state_variables)] ];
        [~, mat] = qr2(big_mat,0);
        mat = mat';
        PredictedObservedVarianceSquareRoot = mat(1:number_of_observed_variables,1:number_of_observed_variables);
        CovarianceObservedStateSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),1:number_of_observed_variables);
        StateVectorVarianceSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),number_of_observed_variables+(1:number_of_state_variables));
        PredictionError = Y(:,t) - PredictedObservedMean;
        StateVectorMean = PredictedStateMean + (CovarianceObservedStateSquareRoot/PredictedObservedVarianceSquareRoot)*PredictionError;
    else
        dState = bsxfun(@minus,tmp(mf0,:),PredictedStateMean);
        dObserved = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean);
        PredictedStateVariance = dState*diag(weights_c)*dState';
        PredictedObservedVariance = dObserved*diag(weights_c)*dObserved' + H;
        PredictedStateAndObservedCovariance = dState*diag(weights_c)*dObserved';
        PredictionError = Y(:,t) - PredictedObservedMean;
        KalmanFilterGain = PredictedStateAndObservedCovariance/PredictedObservedVariance;
        StateVectorMean = PredictedStateMean + KalmanFilterGain*PredictionError;
        StateVectorVariance = PredictedStateVariance - KalmanFilterGain*PredictedObservedVariance*KalmanFilterGain';
        [StateVectorVarianceSquareRoot, p]= chol(StateVectorVariance,'lower');
        if p
            LIK=-Inf;
            lik(t)=-Inf;
            return
        end
        [~, p]= chol(PredictedObservedVariance,'lower');
        if p
            LIK=-Inf;
            lik(t)=-Inf;
            return
        end
    end
    lik(t) = log( sum(probability2(Y(:,t),H_lower_triangular_cholesky,tmp(mf1,:)).*weights,1) ) ;
end

LIK = -sum(lik(start:end));