File: online_auxiliary_filter.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (463 lines) | stat: -rw-r--r-- 23,179 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
function [pmean, pmode, pmedian, pstdev, p025, p975, covariance] = online_auxiliary_filter(xparam1, dataset_, options_, M_, estim_params_, bayestopt_, oo_)
% [pmean, pmode, pmedian, pstdev, p025, p975, covariance] = online_auxiliary_filter(xparam1, dataset_, options_, M_, estim_params_, bayestopt_, oo_)
% Liu & West particle filter = auxiliary particle filter including Liu & West filter on parameters.
%
% INPUTS
% - xparam1                  [double]    n×1 vector, Initial condition for the estimated parameters.
% - dataset_                 [dseries]   Sample used for estimation.
% - dataset_info             [struct]    Description of the sample.
% - options_                 [struct]    Option values.
% - M_                       [struct]    Description of the model.
% - estim_params_            [struct]    Description of the estimated parameters.
% - bayestopt_               [struct]    Prior definition.
% - oo_                      [struct]    Results.
%
% OUTPUTS
% - pmean                    [double]    n×1 vector, mean of the particles at the end of the sample (for the parameters).
% - pmode                    [double]    n×1 vector, mode of the particles at the end of the sample (for the parameters).
% - pmedian                  [double]    n×1 vector, median of the particles at the end of the sample (for the parameters).
% - pstdev                   [double]    n×1 vector, st. dev. of the particles at the end of the sample (for the parameters).
% - p025                     [double]    n×1 vector, 2.5 percent of the particles are below p025(i) for i=1,…,n.
% - p975                     [double]    n×1 vector, 97.5 percent of the particles are below p975(i) for i=1,…,n.
% - covariance               [double]    n×n matrix, covariance of the particles at the end of the sample.

% Copyright © 2013-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

% Set seed for randn().
options_ = set_dynare_seed_local_options(options_,'default');
pruning = options_.particle.pruning;
second_resample = options_.particle.resampling.status.systematic;
variance_update = true;

bounds = prior_bounds(bayestopt_, options_.prior_trunc); % Reset bounds as lb and ub must only be operational during mode-finding

% initialization of state particles
[~, M_, options_, oo_, ReducedForm] = solve_model_for_online_filter(true, xparam1, dataset_, options_, M_, estim_params_, bayestopt_, bounds, oo_);

order = options_.order;
mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
number_of_particles = options_.particle.number_of_particles;
number_of_parameters = size(xparam1,1);
Y = dataset_.data;
sample_size = size(Y,1);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);
liu_west_delta = options_.particle.liu_west_delta;

% Get initial conditions for the state particles
StateVectorMean = ReducedForm.StateVectorMean;
StateVectorVarianceSquareRoot = chol(ReducedForm.StateVectorVariance)';
state_variance_rank = size(StateVectorVarianceSquareRoot,2);
StateVectors = bsxfun(@plus,StateVectorVarianceSquareRoot*randn(state_variance_rank,number_of_particles),StateVectorMean);
if pruning
    if order == 2
        StateVectors_ = StateVectors;
    elseif order == 3
        StateVectors_ = repmat(StateVectors,3,1);
    else
        error('Pruning is not available for orders > 3');
    end
end

% parameters for the Liu & West filter
small_a = (3*liu_west_delta-1)/(2*liu_west_delta);
b_square = 1-small_a*small_a;

% Initialization of parameter particles
xparam = zeros(number_of_parameters,number_of_particles);
Prior = dprior(bayestopt_, options_.prior_trunc);
for i=1:number_of_particles
    info = 12042009;
    while info
        candidate = Prior.draw();
        [info, M_, options_, oo_] = solve_model_for_online_filter(false, candidate, dataset_, options_, M_, estim_params_, bayestopt_, bounds, oo_);
        if ~info
            xparam(:,i) = candidate(:);
        end
    end
end

% Initialization of the weights of particles.
weights = ones(1,number_of_particles)/number_of_particles;

% Initialization of the likelihood.
const_lik = log(2*pi)*number_of_observed_variables;
mean_xparam = zeros(number_of_parameters,sample_size);
mode_xparam = zeros(number_of_parameters,sample_size);
median_xparam = zeros(number_of_parameters,sample_size);
std_xparam = zeros(number_of_parameters,sample_size);
lb95_xparam = zeros(number_of_parameters,sample_size);
ub95_xparam = zeros(number_of_parameters,sample_size);

%% The Online filter
for t=1:sample_size
    if t>1
        fprintf('\nSubsample with %s first observations.\n\n', int2str(t))
    else
        fprintf('\nSubsample with only the first observation.\n\n')
    end
    % Moments of parameters particles distribution
    m_bar = xparam*(weights');
    temp = bsxfun(@minus,xparam,m_bar);
    sigma_bar = (bsxfun(@times,weights,temp))*(temp');
    if variance_update
        chol_sigma_bar = chol(b_square*sigma_bar)';
    end
    % Prediction (without shocks)
    fore_xparam = bsxfun(@plus,(1-small_a).*m_bar,small_a.*xparam);
    tau_tilde = zeros(1,number_of_particles);
    for i=1:number_of_particles
        % model resolution
        [info, M_, options_, oo_, ReducedForm] = ...
            solve_model_for_online_filter(false, fore_xparam(:,i), dataset_, options_, M_, estim_params_, bayestopt_, bounds, oo_);
        if ~info(1)
            steadystate = ReducedForm.steadystate;
            state_variables_steady_state = ReducedForm.state_variables_steady_state;
            % Set local state space model (second-order approximation).
            if ReducedForm.use_k_order_solver
                dr = ReducedForm.dr;
                udr = ReducedForm.udr;
            else
                steadystate = ReducedForm.steadystate;
                constant = ReducedForm.constant;
                % Set local state space model (first-order approximation).
                ghx  = ReducedForm.ghx;
                ghu  = ReducedForm.ghu;
                % Set local state space model (second-order approximation).
                ghxx = ReducedForm.ghxx;
                ghuu = ReducedForm.ghuu;
                ghxu = ReducedForm.ghxu;
                if (order==3)
                    % Set local state space model (third order approximation).
                    ghs2 = ReducedForm.ghs2;
                    ghxxx = ReducedForm.ghxxx;
                    ghuuu = ReducedForm.ghuuu;
                    ghxxu = ReducedForm.ghxxu;
                    ghxuu = ReducedForm.ghxuu;
                    ghxss = ReducedForm.ghxss;
                    ghuss = ReducedForm.ghuss;
                end
                if pruning
                    if order == 2
                        state_variables_steady_state_ = state_variables_steady_state;
                    elseif order == 3
                        state_variables_steady_state_ = repmat(state_variables_steady_state,3,1);
                    else
                        error('Pruning is not available for orders > 3');
                    end
                end

            end
            % particle likelihood contribution
            yhat = bsxfun(@minus, StateVectors(:,i), state_variables_steady_state);
            if ReducedForm.use_k_order_solver
                tmp = local_state_space_iteration_k(yhat, zeros(number_of_structural_innovations, 1), dr, M_, options_, udr);
            else
                if pruning
                    yhat_ = bsxfun(@minus,StateVectors_(:,i),state_variables_steady_state_);
                    if order == 2
                        tmp = local_state_space_iteration_2(yhat, zeros(number_of_structural_innovations, 1), ghx, ghu, constant, ghxx, ghuu, ghxu, yhat_, steadystate, options_.threads.local_state_space_iteration_2);
                    elseif order == 3
                        tmp = local_state_space_iteration_3(yhat_, zeros(number_of_structural_innovations, 1), ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, options_.threads.local_state_space_iteration_3, pruning);
                    else
                    error('Pruning is not available for orders > 3');
                    end
                else
                    if order == 1 
                        tmp = bsxfun(@plus,constant,ghx*yhat);
                    elseif order == 2
                        tmp = local_state_space_iteration_2(yhat, zeros(number_of_structural_innovations, 1), ghx, ghu, constant, ghxx, ghuu, ghxu, options_.threads.local_state_space_iteration_2);
                    elseif order == 3
                        tmp = local_state_space_iteration_3(yhat, zeros(number_of_structural_innovations, 1), ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, options_.threads.local_state_space_iteration_3, pruning);
                    else
                        error('Order > 3: use_k_order_solver should be set to true');
                    end
                end
            end
            PredictionError = bsxfun(@minus,Y(t,:)', tmp(mf1,:));
            % Replace Gaussian density with a Student density with 3 degrees of freedom for fat tails.
            z = sum(PredictionError.*(ReducedForm.H\PredictionError), 1) ;
            ddl = 3 ;
            %tau_tilde(i) = weights(i).*(tpdf(z,3*ones(size(z)))+1e-99) ;
            tau_tilde(i) = weights(i)*(exp(gammaln((ddl + 1) / 2) - gammaln(ddl/2))/(sqrt(ddl*pi)*(1 + (z^2)/ddl)^((ddl + 1)/2))+1e-99) ;
        else
            tau_tilde(i) = 0 ;
        end
    end
    % particles selection
    tau_tilde = tau_tilde/sum(tau_tilde);
    indx = resample(0, tau_tilde', options_.particle);
    StateVectors = StateVectors(:,indx);
    xparam = fore_xparam(:,indx);
    if pruning
        StateVectors_ = StateVectors_(:,indx);
    end
    w_stage1 = weights(indx)./tau_tilde(indx);
    % draw in the new distributions
    wtilde = zeros(1, number_of_particles);
    for i=1:number_of_particles
        info = 12042009;
        counter=0;
        while info(1) && counter <options_.particle.liu_west_max_resampling_tries
            counter=counter+1;
            candidate = xparam(:,i) + chol_sigma_bar*randn(number_of_parameters, 1);
            if all(candidate>=bounds.lb) && all(candidate<=bounds.ub)
                % model resolution for new parameters particles
                [info, M_, options_, oo_, ReducedForm] = ...
                    solve_model_for_online_filter(false, candidate, dataset_, options_, M_, estim_params_, bayestopt_, bounds, oo_) ;
                if ~info(1)
                    xparam(:,i) = candidate ;
                    steadystate = ReducedForm.steadystate;
                    state_variables_steady_state = ReducedForm.state_variables_steady_state;
                    % Set local state space model (second order approximation).
                    if ReducedForm.use_k_order_solver
                        dr = ReducedForm.dr;
                        udr = ReducedForm.udr;
                    else
                        constant = ReducedForm.constant;
                        % Set local state space model (first-order approximation).
                        ghx  = ReducedForm.ghx;
                        ghu  = ReducedForm.ghu;
                        % Set local state space model (second-order approximation).
                        ghxx = ReducedForm.ghxx;
                        ghuu = ReducedForm.ghuu;
                        ghxu = ReducedForm.ghxu;
                        if (order == 3)
                            % Set local state space model (third order approximation).
                            ghs2 = ReducedForm.ghs2; % only needed for order=3 as already included in constant for order=2
                            ghxxx = ReducedForm.ghxxx;
                            ghuuu = ReducedForm.ghuuu;
                            ghxxu = ReducedForm.ghxxu;
                            ghxuu = ReducedForm.ghxuu;
                            ghxss = ReducedForm.ghxss;
                            ghuss = ReducedForm.ghuss;
                        end
                        if pruning
                            if order == 2
                                state_variables_steady_state_ = state_variables_steady_state;
                                mf0_ = mf0;
                            elseif order == 3
                                state_variables_steady_state_ = repmat(state_variables_steady_state,3,1);
                                mf0_ = repmat(mf0,1,3); 
                                mask2 = number_of_state_variables+1:2*number_of_state_variables;
                                 mask3 = 2*number_of_state_variables+1:number_of_state_variables;
                                mf0_(mask2) = mf0_(mask2)+size(ghx,1);
                                mf0_(mask3) = mf0_(mask3)+2*size(ghx,1);
                            else
                                error('Pruning is not available for orders > 3');
                            end
                        end
                    end
                    % Get covariance matrices and structural shocks
                    epsilon = chol(ReducedForm.Q)'*randn(number_of_structural_innovations, 1);
                    % compute particles likelihood contribution
                    yhat = bsxfun(@minus,StateVectors(:,i), state_variables_steady_state);
                    if ReducedForm.use_k_order_solver
                        tmp = local_state_space_iteration_k(yhat, epsilon, dr, M_, options_, udr);
                    else
                        if pruning
                            yhat_ = bsxfun(@minus,StateVectors_(:,i), state_variables_steady_state_);
                            if order <= 2
                                [tmp, tmp_] = local_state_space_iteration_2(yhat, epsilon, ghx, ghu, constant, ghxx, ghuu, ghxu, yhat_, steadystate, options_.threads.local_state_space_iteration_2);
                            elseif order == 3
                                [tmp, tmp_] = local_state_space_iteration_3(yhat_, epsilon, ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, options_.threads.local_state_space_iteration_3, pruning);
                            else
                                error('Pruning is not available for orders > 3');
                            end
                            StateVectors_(:,i) = tmp_(mf0_,:);
                        else
    	                    if order == 1 
                                tmp = bsxfun(@plus,constant,ghx*yhat)+ghu*epsilon;
                            elseif order == 2
                                tmp = local_state_space_iteration_2(yhat, epsilon, ghx, ghu, constant, ghxx, ghuu, ghxu, options_.threads.local_state_space_iteration_2);
                            elseif order == 3
                                tmp = local_state_space_iteration_3(yhat, epsilon, ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, options_.threads.local_state_space_iteration_3, pruning);
                            else
                                error('Order > 3: use_k_order_solver should be set to true');
                            end
                        end
                    end
                    StateVectors(:,i) = tmp(mf0,:);
                    PredictionError = bsxfun(@minus,Y(t,:)', tmp(mf1,:));
                    wtilde(i) = w_stage1(i)*exp(-.5*(const_lik+log(det(ReducedForm.H))+sum(PredictionError.*(ReducedForm.H\PredictionError), 1)));
                end
            end
            if counter==options_.particle.liu_west_max_resampling_tries
                fprintf('\nLiu & West particle filter: I haven''t been able to solve the model in %u tries.\n',options_.particle.liu_west_max_resampling_tries)
                fprintf('Liu & West particle filter: The last error message was: %s\n',get_error_message(info))
                fprintf('Liu & West particle filter: You can try to increase liu_west_max_resampling_tries, but most\n')
                fprintf('Liu & West particle filter: likely there is an issue with the model.\n')
                error('Liu & West particle filter: unable to solve the model.')
            end
        end
    end
    % normalization
    weights = wtilde/sum(wtilde);
    if variance_update && (neff(weights)<options_.particle.resampling.threshold*sample_size)
        variance_update = false;
    end
    % final resampling (not advised)
    if second_resample
        [~, idmode] = max(weights);
        mode_xparam(:,t) = xparam(:,idmode);
        indx = resample(0, weights,options_.particle);
        StateVectors = StateVectors(:,indx) ;
        if pruning
            StateVectors_ = StateVectors_(:,indx);
        end
        xparam = xparam(:,indx);
        weights = ones(1, number_of_particles)/number_of_particles;
        mean_xparam(:,t) = mean(xparam, 2);
        mat_var_cov = bsxfun(@minus, xparam, mean_xparam(:,t));
        mat_var_cov = (mat_var_cov*mat_var_cov')/(number_of_particles-1);
        std_xparam(:,t) = sqrt(diag(mat_var_cov));
        for i=1:number_of_parameters
            temp = sortrows(xparam(i,:)');
            lb95_xparam(i,t) = temp(0.025*number_of_particles);
            median_xparam(i,t) = temp(0.5*number_of_particles);
            ub95_xparam(i,t) = temp(0.975*number_of_particles);
        end
    end
    if second_resample
        [~, idmode] = max(weights);
        mode_xparam(:,t) = xparam(:,idmode);
        mean_xparam(:,t) = xparam*(weights');
        mat_var_cov = bsxfun(@minus, xparam,mean_xparam(:,t));
        mat_var_cov = mat_var_cov*(bsxfun(@times, mat_var_cov, weights)');
        std_xparam(:,t) = sqrt(diag(mat_var_cov));
        for i=1:number_of_parameters
            temp = sortrows([xparam(i,:)' weights'], 1);
            cumulated_weights = cumsum(temp(:,2));
            pass1 = false;
            pass2 = false;
            pass3 = false;
            for j=1:number_of_particles
                if ~pass1 && cumulated_weights(j)>=0.025
                    lb95_xparam(i,t) = temp(j,1);
                    pass1 = true;
                end
                if  ~pass2 && cumulated_weights(j)>=0.5
                    median_xparam(i,t) = temp(j,1);
                    pass2 = true;
                end
                if ~pass3 && cumulated_weights(j)>=0.975
                    ub95_xparam(i,t) = temp(j,1);
                    pass3 = true;
                end
            end
        end
    end
    str = sprintf(' Lower Bound (95%%) \t Mean \t\t\t Upper Bound (95%%)');
    for l=1:size(xparam,1)
        str = sprintf('%s\n %5.4f \t\t %7.5f \t\t %5.4f', str, lb95_xparam(l,t), mean_xparam(l,t), ub95_xparam(l,t));
    end
    disp(str)
    disp('')
end

pmean = xparam(:,sample_size);
pmode = mode_xparam(:,sample_size);
pstdev = std_xparam(:,sample_size) ;
p025 = lb95_xparam(:,sample_size) ;
p975 = ub95_xparam(:,sample_size) ;
pmedian = median_xparam(:,sample_size) ;
covariance = mat_var_cov;

%% Plot parameters trajectory
TeX = options_.TeX;

nr = ceil(sqrt(number_of_parameters)) ;
nc = floor(sqrt(number_of_parameters));
nbplt = 1 ;

if TeX
    fidTeX = fopen([M_.fname '_param_traj.tex'],'w');
    fprintf(fidTeX,'%% TeX eps-loader file generated by online_auxiliary_filter.m (Dynare).\n');
    fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
    fprintf(fidTeX,' \n');
end

for plt = 1:nbplt
    hh_fig = dyn_figure(options_.nodisplay,'Name','Parameters Trajectories');
    for k=1:length(pmean)
        subplot(nr,nc,k)
        [name,texname] = get_the_name(k,TeX,M_,estim_params_,options_.varobs);
        % Draw the surface for an interval containing 95% of the particles.
        area(1:sample_size, ub95_xparam(k,:), 'FaceColor', [.9 .9 .9], 'BaseValue', min(lb95_xparam(k,:)));
        hold on
        area(1:sample_size, lb95_xparam(k,:), 'FaceColor', [1 1 1], 'BaseValue', min(lb95_xparam(k,:)));
        % Draw the mean of particles.
        plot(1:sample_size, mean_xparam(k,:), '-k', 'linewidth', 2)
        if TeX
            title(texname,'interpreter','latex')
        else
            title(name,'interpreter','none')
        end
        hold off
        axis tight
        drawnow
    end
    dyn_saveas(hh_fig, [M_.fname '_param_traj' int2str(plt)], options_.nodisplay, options_.graph_format);
    if TeX
        % TeX eps loader file
        fprintf(fidTeX,'\\begin{figure}[H]\n');
        fprintf(fidTeX,'\\centering \n');
        fprintf(fidTeX,'\\includegraphics[scale=0.5]{%s_ParamTraj%s}\n',M_.fname,int2str(plt));
        fprintf(fidTeX,'\\caption{Parameters trajectories.}');
        fprintf(fidTeX,'\\label{Fig:ParametersPlots:%s}\n',int2str(plt));
        fprintf(fidTeX,'\\end{figure}\n');
        fprintf(fidTeX,' \n');
    end
end

% Plot Parameter Densities
number_of_grid_points = 2^9;      % 2^9 = 512 !... Must be a power of two.
bandwidth = 0;                    % Rule of thumb optimal bandwidth parameter.
kernel_function = 'gaussian';     % Gaussian kernel for Fast Fourier Transform approximation.
for plt = 1:nbplt
    hh_fig = dyn_figure(options_.nodisplay,'Name','Parameters Densities');
    for k=1:length(pmean)
        subplot(nr,nc,k)
        [name,texname] = get_the_name(k,TeX,M_,estim_params_,options_.varobs);
        optimal_bandwidth = mh_optimal_bandwidth(xparam(k,:)',number_of_particles,bandwidth,kernel_function);
        [density(:,1),density(:,2)] = kernel_density_estimate(xparam(k,:)', number_of_grid_points, ...
                                                          number_of_particles, optimal_bandwidth, kernel_function);
        plot(density(:,1), density(:,2));
        hold on
        if TeX
            title(texname,'interpreter','latex')
        else
            title(name,'interpreter','none')
        end
        hold off
        axis tight
        drawnow
    end
    dyn_saveas(hh_fig,[ M_.fname '_param_density' int2str(plt) ],options_.nodisplay,options_.graph_format);
    if TeX && any(strcmp('eps',cellstr(options_.graph_format)))
        % TeX eps loader file
        fprintf(fidTeX, '\\begin{figure}[H]\n');
        fprintf(fidTeX,'\\centering \n');
        fprintf(fidTeX,'\\includegraphics[width=%2.2f\\textwidth]{%_param_density%s}\n',min(k/nc,1),M_.fname,int2str(plt));
        fprintf(fidTeX,'\\caption{Parameter densities based on the Liu/West particle filter.}');
        fprintf(fidTeX,'\\label{Fig:ParameterDensities:%s}\n',int2str(plt));
        fprintf(fidTeX,'\\end{figure}\n');
        fprintf(fidTeX,' \n');
    end
end