File: dyn_ols.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (236 lines) | stat: -rw-r--r-- 8,259 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
function ds = dyn_ols(ds, fitted_names_dict, eqtags, model_name, param_names, ds_range, update_params)
% function varargout = dyn_ols(ds, fitted_names_dict, eqtags, model_name, param_names, ds_range)
% Run OLS on chosen model equations; unlike olseqs, allow for time t
% endogenous variables on LHS
%
% INPUTS
%   ds                [dseries]         data
%   fitted_names_dict [cell]            Nx2 or Nx3 cell array to be used in naming fitted
%                                       values; first column is the equation tag,
%                                       second column is the name of the
%                                       associated fitted value, third column
%                                       (if it exists) is the function name of
%                                       the transformation to perform on the
%                                       fitted value.
%   eqtags            [cellstr]         names of equation tags to estimate. If empty,
%                                       estimate all equations
%   model_name        [celltsr]         name to use in oo_ and inc file (must be
%                                       same size as eqtags)
%   param_names       [cell of cellstr] list of parameters to estimate by eqtag
%                                       (if empty, estimate all)
%   ds_range          [dates]           range of dates to use in estimation
%   update_params     [logical]         If false M_.params will not be estimation.
%                                       If true (default) M_.params will be updated.
%
% OUTPUTS
%   ds                [dseries]    data updated with fitted values
%
% SPECIAL REQUIREMENTS
%   dynare must have been run with the option: json=compute

% Copyright © 2017-2021 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

global M_ oo_ options_

if nargin < 1 || nargin > 7
    error('dyn_ols() takes between 1 and 7 arguments')
end

if isempty(ds) || ~isdseries(ds)
    error('dyn_ols: the first argument must be a dseries')
end

if nargin == 6 && ~isempty(ds_range)
    update_params = true;
elseif nargin < 6
    ds_range = ds.dates;
    update_params = true;
else
    if isempty(ds_range)
        ds_range = ds.dates;
    else
        if ds_range(1) < ds.firstdate || ds_range(end) > lastdate(ds)
            error('There is a problem with the 6th argument: the date range does not correspond to that of the dseries')
        end
    end
    update_params = true;
end

if nargin < 5
    param_names = {};
else
    if ~isempty(param_names)
        if ~iscell(param_names) || (~isempty(eqtags) && length(param_names) ~= length(eqtags))
            error('The 5th argument, if provided, must be a cell of the same length as the eqtags argument')
        end
        for i = 1:length(param_names)
            if ~iscellstr(param_names{i})
                error('every entry of param_names must be a cellstr')
            end
        end
    end
end

if nargin < 3
    eqtags = {};
end

if nargin < 2
    fitted_names_dict = {};
else
    assert(isempty(fitted_names_dict) || ...
        (iscell(fitted_names_dict) && ...
        (size(fitted_names_dict, 2) == 2 || size(fitted_names_dict, 2) == 3)), ...
        'dyn_ols: the second argument must be an Nx2 or Nx3 cell array');
end

%% Get Equation(s)
ast = get_ast(eqtags);

%% Set model_name
if nargin < 4
    model_name = cell(length(ast), 1);
else
    if isempty(model_name)
        model_name = repmat({''}, length(ast), 1);
    else
        if ~iscellstr(model_name) || length(model_name) ~= length(ast)
            error('The length of the 4th argument must be a cellstr with length equal to the number of equations estimated')
        end
        for i = 1:length(model_name)
            if ~isvarname(model_name{i})
                error('Every entry in the 4th argument must be a valid string');
            end
        end
    end
end

%% Parse equations
[Y, lhssub, X, fp, lp] = common_parsing(ds(ds_range), ast, true, param_names);

%% Loop over equations
for i = 1:length(Y)
    pnames = X{i}.name;
    [nobs, nvars] = size(X{i}.data);

    if ~isempty(model_name{i})
        tag = model_name{i};
    else
        if isfield(ast{i}, 'tags') && isfield(ast{i}.tags, 'name')
            tag = ast{i}.tags.('name');
        else
            tag = ['eq_line_no_' num2str(ast{i}.line)];
        end
    end

    %% Estimation
    % From LeSage, James P. "Applied Econometrics using MATLAB"
    oo_.ols.(tag).dof = nobs - nvars;

    % Estimated Parameters
    [q, r] = qr(X{i}.data, 0);
    xpxi = (r'*r)\eye(nvars);
    oo_.ols.(tag).beta = r\(q'*Y{i}.data);
    oo_.ols.(tag).param_idxs = zeros(length(pnames), 1);
    for j = 1:length(pnames)
        if ~strcmp(pnames{j}, 'intercept')
            oo_.ols.(tag).param_idxs(j) = find(strcmp(M_.param_names, pnames{j}));
            if update_params
                M_.params(oo_.ols.(tag).param_idxs(j)) = oo_.ols.(tag).beta(j);
            end
        end
    end

    % Write .inc file
    write_param_init_inc_file('ols', tag, oo_.ols.(tag).param_idxs, oo_.ols.(tag).beta);

    % Yhat
    idx = 0;
    yhatname = [tag '_FIT'];
    if ~isempty(fitted_names_dict)
        idx = strcmp(fitted_names_dict(:,1), tag);
        if any(idx)
            yhatname = fitted_names_dict{idx, 2};
        end
    end
    oo_.ols.(tag).Yhat = dseries(X{i}.data*oo_.ols.(tag).beta, fp{i}, yhatname);

    % Residuals
    oo_.ols.(tag).resid = Y{i} - oo_.ols.(tag).Yhat;

    % Correct Yhat reported back to user
    Y{i} = Y{i} + lhssub{i};
    oo_.ols.(tag).Yobs = Y{i};
    oo_.ols.(tag).Yhat = oo_.ols.(tag).Yhat + lhssub{i};
    oo_.ols.(tag).YhatOrig = oo_.ols.(tag).Yhat;

    % Apply correcting function for Yhat if it was passed
    if any(idx) ...
            && length(fitted_names_dict(idx, :)) == 3 ...
            && ~isempty(fitted_names_dict{idx, 3})
        oo_.ols.(tag).Yhat = ...
            feval(fitted_names_dict{idx, 3}, oo_.ols.(tag).Yhat);
    end
    ds.(oo_.ols.(tag).Yhat.name{:}) = oo_.ols.(tag).Yhat;

    %% Calculate statistics
    % Estimate for sigma^2
    SS_res = oo_.ols.(tag).resid.data'*oo_.ols.(tag).resid.data;
    oo_.ols.(tag).s2 = SS_res/oo_.ols.(tag).dof;

    % R^2
    ym = Y{i}.data - mean(Y{i});
    SS_tot = ym'*ym;
    oo_.ols.(tag).R2 = 1 - SS_res/SS_tot;

    % Adjusted R^2
    oo_.ols.(tag).adjR2 = oo_.ols.(tag).R2 - (1 - oo_.ols.(tag).R2)*(nvars-1)/(oo_.ols.(tag).dof);

    % Durbin-Watson
    ediff = oo_.ols.(tag).resid.data(2:nobs) - oo_.ols.(tag).resid.data(1:nobs-1);
    oo_.ols.(tag).dw = (ediff'*ediff)/SS_res;

    % Standard Error
    oo_.ols.(tag).stderr = sqrt(oo_.ols.(tag).s2*diag(xpxi));

    % T-Stat
    oo_.ols.(tag).tstat = oo_.ols.(tag).beta./oo_.ols.(tag).stderr;

    %% Print Output
    if ~options_.noprint
        if nargin == 3
            title = ['OLS Estimation of equation ''' tag ''' [name = ''' tag ''']'];
        else
            title = ['OLS Estimation of equation ''' tag ''''];
        end

        preamble = {['Dependent Variable: ' Y{i}.name{:}], ...
            sprintf('No. Independent Variables: %d', nvars), ...
            sprintf('Observations: %d from %s to %s\n', nobs, fp{i}.char, lp{i}.char)};

        afterward = {sprintf('R^2: %f', oo_.ols.(tag).R2), ...
            sprintf('R^2 Adjusted: %f', oo_.ols.(tag).adjR2), ...
            sprintf('s^2: %f', oo_.ols.(tag).s2), ...
            sprintf('Durbin-Watson: %f', oo_.ols.(tag).dw)};

        dyn_table(title, preamble, afterward, pnames, ...
            {'Estimates','t-statistic','Std. Error'}, 4, ...
            [oo_.ols.(tag).beta oo_.ols.(tag).tstat oo_.ols.(tag).stderr]);
    end
end
end