1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
function ds = olsgibbs(ds, eqtag, BetaPriorExpectation, BetaPriorVariance, s2, nu, ndraws, discarddraws, thin, fitted_names_dict, model_name, param_names, ds_range)
%function ds = olsgibbs(ds, eqtag, BetaPriorExpectation, BetaPriorVariance, s2, nu, ndraws, discarddraws, thin, fitted_names_dict, model_name, param_names, ds_range)
% Implements Gibbs Sampling for univariate linear model.
%
% INPUTS
% - ds [dseries] dataset.
% - eqtag [string] name of equation tag to estimate.
% - BetaPriorExpectation [double] vector with n elements, prior expectation of β.
% - BetaPriorVariance [double] n*n matrix, prior variance of β.
% - s2 [double] scalar, first hyperparameter for h.
% - nu [integer] scalar, second hyperparameter for h.
% - ndraws [integer] scalar, total number of draws (Gibbs sampling)
% - discarddraws [integer] scalar, number of draws to be discarded.
% - thin [integer] scalar, if thin == N, save every Nth draw (default is 1).
% - fitted_names_dict [cell] Nx2 or Nx3 cell array to be used in naming fitted
% values; first column is the equation tag,
% second column is the name of the
% associated fitted value, third column
% (if it exists) is the function name of
% the transformation to perform on the
% fitted value.
% - model_name [string] name to use in oo_ and inc file
% - param_names [cellstr] list of parameters to estimate (if
% empty, estimate all)
% - ds_range [dates] range of dates to use in estimation
%
% OUTPUTS
% - ds [dseries] dataset updated with fitted value
%
% SPECIAL REQUIREMENTS
% dynare must have been run with the option: json=compute
% Copyright © 2018-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
global M_ oo_ options_
%% Check input
if nargin < 7 || nargin > 13
error('Incorrect number of arguments')
end
if isempty(ds) || ~isdseries(ds)
error('The 1st argument must be a dseries')
end
if ~ischar(eqtag)
error('The 2nd argument must be a string')
end
if ~isvector(BetaPriorExpectation)
error('The 3rd argument must be a vector')
else
if ~isempty(BetaPriorExpectation)
BetaPriorExpectation = transpose(BetaPriorExpectation(:));
end
end
if ~ismatrix(BetaPriorVariance) || length(BetaPriorExpectation)~=length(BetaPriorVariance)
error('The 4th argument (BetaPriorVariance) must be a square matrix with the same dimension as the third argument (BetaPriorExpectation)')
else
warning('off', 'MATLAB:singularMatrix')
BetaInversePriorVariance = eye(length(BetaPriorVariance))/BetaPriorVariance;
warning('on', 'MATLAB:singularMatrix')
end
if ~isreal(s2)
error('The 5th argument (s2) must be a double')
end
if ~isint(nu)
error('The 6th argument (nu) must be an integer')
end
if ~isint(ndraws)
error('The 7th argument (ndraws) must be an integer')
end
if nargin <= 7
discarddraws = 0;
else
if ~isint(discarddraws)
error('The 8th argument (discardeddraws), if provided, must be an integer')
else
if discarddraws >= ndraws
error('The 8th argument (discardeddraws) must be smaller than the 7th argument (ndraws)')
end
end
end
if nargin <= 8
thin = 1;
else
if ~isint(thin)
error('The 9th argument, must be an integer')
end
end
if nargin <= 9
fitted_names_dict = {};
else
if ~isempty(fitted_names_dict) && ...
(~iscell(fitted_names_dict) || ...
(size(fitted_names_dict, 2) < 2 || size(fitted_names_dict, 2) > 3))
error('The 10th argument must be an Nx2 or Nx3 cell array');
end
end
if nargin <= 10
model_name = eqtag;
else
if ~isvarname(model_name)
error('The 11th argument must be a valid string');
end
end
if nargin <= 11
param_names = {};
else
if ~isempty(param_names) && ~iscellstr(param_names)
error('The 12th argument, if provided, must be a cellstr')
end
end
if nargin <= 12
ds_range = ds.dates;
else
if isempty(ds_range)
ds_range = ds.dates;
else
if ds_range(1) < ds.firstdate || ds_range(end) > lastdate(ds)
error('There is a problem with the 13th argument: the date range does not correspond to that of the dseries')
end
end
end
%% Parse equation
[Y, lhssub, X, fp, lp] = common_parsing(ds(ds_range), get_ast({eqtag}), true, param_names);
lhsname = Y{1}.name;
Y = Y{1}.data;
X = X{1};
fp = fp{1};
lp = lp{1};
pnames = X.name;
N = size(X.data, 1);
X = X.data;
%% Estimation (see Koop, Gary. Bayesian Econometrics. 2003. Chapter 4.2)
PosteriorDegreesOfFreedom = N + nu;
n = length(pnames);
assert(n==length(BetaPriorExpectation), 'the length prior mean for beta must be the same as the number of parameters in the equation to be estimated.');
h = 1.0/s2*nu; % Initialize h to the prior expectation.
periods = 1;
linee = 1;
% Posterior Simulation
oo_.olsgibbs.(model_name).draws = zeros(floor((ndraws-discarddraws)/thin), n+3);
for i=1:discarddraws
% Set conditional distribution of β
InverseConditionalPoseriorVariance = BetaInversePriorVariance + h*(X'*X);
cholConditionalPosteriorVariance = chol(InverseConditionalPoseriorVariance\eye(n), 'upper');
ConditionalPosteriorExpectation = (BetaPriorExpectation*BetaInversePriorVariance + h*(Y'*X))/InverseConditionalPoseriorVariance;
% Draw beta | Y, h
beta = rand_multivariate_normal(ConditionalPosteriorExpectation, cholConditionalPosteriorVariance, n);
% draw h | Y, beta
resids = Y - X*transpose(beta);
s2_ = (resids'*resids + nu*s2)/PosteriorDegreesOfFreedom;
h = gamrnd(PosteriorDegreesOfFreedom/2.0, 2.0/(PosteriorDegreesOfFreedom*s2_));
end
hh_fig = dyn_waitbar(0,'Please wait. Gibbs sampler...');
set(hh_fig,'Name','Olsgibbs estimation.');
for i = discarddraws+1:ndraws
if ~mod(i,100)
dyn_waitbar((i-discarddraws)/(ndraws-discarddraws),hh_fig,'Please wait. Gibbs sampler...');
end
% Set conditional distribution of β
InverseConditionalPoseriorVariance = BetaInversePriorVariance + h*(X'*X);
cholConditionalPosteriorVariance = chol(InverseConditionalPoseriorVariance\eye(n), 'upper');
ConditionalPosteriorExpectation = (BetaPriorExpectation*BetaInversePriorVariance + h*(Y'*X))/InverseConditionalPoseriorVariance;
% Draw beta | Y, h
beta = rand_multivariate_normal(ConditionalPosteriorExpectation, cholConditionalPosteriorVariance, n);
% draw h | Y, beta
resids = Y - X*transpose(beta);
s2_ = (resids'*resids + nu*s2)/PosteriorDegreesOfFreedom;
h = gamrnd(PosteriorDegreesOfFreedom/2.0, 2.0/(PosteriorDegreesOfFreedom*s2_));
R2 = 1-var(resids)/var(Y);
if isequal(periods, thin)
oo_.olsgibbs.(model_name).draws(linee, 1:n) = beta;
oo_.olsgibbs.(model_name).draws(linee, n+1) = h;
oo_.olsgibbs.(model_name).draws(linee, n+2) = s2_;
oo_.olsgibbs.(model_name).draws(linee, n+3) = R2;
periods = 1;
linee = linee+1;
else
periods = periods+1;
end
end
dyn_waitbar_close(hh_fig);
%% Save posterior moments.
oo_.olsgibbs.(model_name).posterior.mean.beta = mean(oo_.olsgibbs.(model_name).draws(:,1:n))';
oo_.olsgibbs.(model_name).posterior.mean.h = mean(oo_.olsgibbs.(model_name).draws(:,n+1));
oo_.olsgibbs.(model_name).posterior.variance.beta = cov(oo_.olsgibbs.(model_name).draws(:,1:n));
oo_.olsgibbs.(model_name).posterior.variance.h = var(oo_.olsgibbs.(model_name).draws(:,n+1));
oo_.olsgibbs.(model_name).s2 = mean(oo_.olsgibbs.(model_name).draws(:,n+2));
oo_.olsgibbs.(model_name).R2 = mean(oo_.olsgibbs.(model_name).draws(:,n+3));
% Yhat
idx = 0;
yhatname = [eqtag '_olsgibbs_FIT'];
if ~isempty(fitted_names_dict)
idx = strcmp(fitted_names_dict(:,1), eqtag);
if any(idx)
yhatname = fitted_names_dict{idx, 2};
end
end
oo_.olsgibbs.(model_name).Yhat = dseries(X*oo_.olsgibbs.(model_name).posterior.mean.beta, fp, yhatname);
oo_.olsgibbs.(model_name).YhatOrig = oo_.olsgibbs.(model_name).Yhat;
oo_.olsgibbs.(model_name).Yobs = dseries(Y, fp, lhsname);
% Residuals
oo_.olsgibbs.(model_name).resid = Y - oo_.olsgibbs.(model_name).Yhat;
% Apply correcting function for Yhat if it was passed
oo_.olsgibbs.(model_name).Yhat = oo_.olsgibbs.(model_name).Yhat + lhssub{1};
if any(idx) ...
&& length(fitted_names_dict(idx, :)) == 3 ...
&& ~isempty(fitted_names_dict{idx, 3})
oo_.olsgibbs.(model_name).Yhat = ...
feval(fitted_names_dict{idx, 3}, oo_.olsgibbs.(model_name).Yhat);
end
ds.(oo_.olsgibbs.(model_name).Yhat.name{:}) = oo_.olsgibbs.(model_name).Yhat;
% Compute and save posterior densities.
for i=1:n
xx = oo_.olsgibbs.(model_name).draws(:,i);
nn = length(xx);
bandwidth = mh_optimal_bandwidth(xx, nn, 0, 'gaussian');
[x, f] = kernel_density_estimate(xx, 512, nn, bandwidth,'gaussian');
oo_.olsgibbs.(model_name).posterior.density.(pnames{i}) = [x, f];
end
% Update model's parameters with posterior mean.
idxs = zeros(length(pnames), 1);
for j = 1:length(pnames)
idxs(j) = find(strcmp(M_.param_names, pnames{j}));
M_.params(idxs(j)) = oo_.olsgibbs.(model_name).posterior.mean.beta(j);
end
oo_.olsgibbs.(model_name).pnames = pnames;
% Write .inc file
write_param_init_inc_file('olsgibbs', model_name, idxs, oo_.olsgibbs.(model_name).posterior.mean.beta);
%% Print Output
if ~options_.noprint
ttitle = ['Bayesian estimation (with Gibbs sampling) of equation ''' eqtag ''''];
preamble = {['Dependent Variable: ' lhsname{:}], ...
sprintf('No. Independent Variables: %d', size(X,2)), ...
sprintf('Observations: %d from %s to %s\n', size(X,1), fp.char, lp.char)};
afterward = {sprintf('s^2: %f', oo_.olsgibbs.(model_name).s2), sprintf('R^2: %f', oo_.olsgibbs.(model_name).R2)};
dyn_table(ttitle, preamble, afterward, pnames, {'Posterior mean', 'Posterior std.'}, 4, [oo_.olsgibbs.(model_name).posterior.mean.beta, sqrt(diag(oo_.olsgibbs.(model_name).posterior.variance.beta))]);
end
end
|