1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
function [steady_state, params, check] = dyn_ramsey_static(ys_init, exo_ss, M_, options_)
% [steady_state, params, check] = dyn_ramsey_static(ys_init, exo_ss, M_, options_)
% Computes the steady state for optimal policy
%
% When there is no steady state file, relies on the fact that Lagrange
% multipliers appear linearly in the system to be solved. Instead of directly
% solving for the Lagrange multipliers along with the other variables, the
% algorithms reduces the size of the problem by always computing the value of
% the multipliers that minimizes the residuals, given the other variables
% (using a minimum norm solution, easy to compute because of the linearity
% property).
%
% INPUTS
% ys_init: vector of endogenous variables or instruments
% exo_ss vector of exogenous steady state (incl. deterministic exogenous)
% M_: Dynare model structure
% options: Dynare options structure
%
% OUTPUTS
% steady_state: steady state value
% params: parameters at steady state, potentially updated by
% steady_state file
% check: error indicator, 0 if everything is OK
%
% SPECIAL REQUIREMENTS
% none
% Copyright © 2003-2024 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
params = M_.params;
check = 0;
options_.steadystate.nocheck = 1; %locally disable checking because Lagrange multipliers are not accounted for in evaluate_steady_state_file
nl_func = @(x) dyn_ramsey_static_1(x,exo_ss,ys_init,M_,options_);
if ~options_.steadystate_flag && check_static_model(ys_init,exo_ss,M_,options_)
steady_state = ys_init;
return
elseif options_.steadystate_flag
k_inst = [];
inst_nbr = size(options_.instruments,1);
for i = 1:inst_nbr
k_inst = [k_inst; strmatch(options_.instruments{i}, M_.endo_names, 'exact')];
end
if inst_nbr == 1
%solve for instrument, using univariate solver, starting at initial value for instrument
[inst_val, info1]= csolve(nl_func,ys_init(k_inst),'',options_.solve_tolf,options_.ramsey.maxit);
if info1==1 || info1==3
check=81;
end
if info1==4
check=87;
end
else
%solve for instrument, using multivariate solver, starting at
%initial value for instruments
o_jacobian_flag = options_.jacobian_flag;
options_.jacobian_flag = false;
[inst_val, errorflag] = dynare_solve(nl_func, ys_init(k_inst), options_.ramsey.maxit, options_.solve_tolf, options_.solve_tolx, options_);
options_.jacobian_flag = o_jacobian_flag;
if errorflag
check=81;
end
end
ys_init(k_inst) = inst_val;
[~,params] = evaluate_steady_state_file(ys_init,exo_ss,M_,options_,~options_.steadystate.nocheck); %run steady state file again to update parameters
[~,~,steady_state] = nl_func(inst_val); %compute and return steady state
else
xx = ys_init(1:M_.orig_endo_nbr);
o_jacobian_flag = options_.jacobian_flag;
options_.jacobian_flag = false;
[xx, errorflag] = dynare_solve(nl_func, xx, options_.ramsey.maxit, options_.solve_tolf, options_.solve_tolx, options_);
options_.jacobian_flag = o_jacobian_flag;
if errorflag
check=81;
end
[~,~,steady_state] = nl_func(xx);
end
function [resids,rJ,steady_state] = dyn_ramsey_static_1(x,exo_ss,ys_init,M_,options_)
resids = [];
rJ = [];
mult = [];
inst_nbr = M_.ramsey_orig_endo_nbr - M_.ramsey_orig_eq_nbr;
if options_.steadystate_flag
k_inst = [];
for i = 1:size(options_.instruments,1)
k_inst = [k_inst; strmatch(options_.instruments{i}, M_.endo_names, 'exact')];
end
ys_init(k_inst) = x; %set instrument, the only value required for steady state computation, to current value
[x,M_.params,check] = evaluate_steady_state_file(ys_init,... %returned x now has size endo_nbr as opposed to input size of n_instruments
exo_ss, ...
M_,options_,~options_.steadystate.nocheck);
if any(imag(x(1:M_.orig_endo_nbr))) %return with penalty
resids=ones(inst_nbr,1)+sum(abs(imag(x(1:M_.orig_endo_nbr)))); %return with penalty
steady_state=NaN(M_.endo_nbr,1);
return
end
if check(1) %return
resids=ones(inst_nbr,1)+sum(abs(x(1:M_.orig_endo_nbr))); %return with penalty
steady_state=NaN(M_.endo_nbr,1);
return
end
end
xx = zeros(M_.endo_nbr,1); %initialize steady state vector
xx(1:M_.orig_endo_nbr) = x(1:M_.orig_endo_nbr); %set values of original endogenous variables based on steady state file or initial value
% Determine whether other auxiliary variables will need to be updated
if any([M_.aux_vars.type] ~= 6) %auxiliary variables other than multipliers
needs_set_auxiliary_variables = true;
fh = str2func([M_.fname '.set_auxiliary_variables']);
s_a_v_func = @(z) fh(z, exo_ss, M_.params);
xx = s_a_v_func(xx);
else
needs_set_auxiliary_variables = false;
end
% Compute the value of the Lagrange multipliers that minimizes the norm of the
% residuals, given the other endogenous
if options_.bytecode
res = bytecode('static', M_, options_, xx, exo_ss, M_.params, 'evaluate');
else
res = feval([M_.fname '.sparse.static_resid'], xx, exo_ss, M_.params);
end
A = feval([M_.fname '.ramsey_multipliers_static_g1'], xx, exo_ss, M_.params, M_.ramsey_multipliers_static_g1_sparse_rowval, M_.ramsey_multipliers_static_g1_sparse_colval, M_.ramsey_multipliers_static_g1_sparse_colptr);
y = res(1:M_.ramsey_orig_endo_nbr);
mult = -A\y;
resids1 = y+A*mult;
if inst_nbr == 1
r1 = sqrt(resids1'*resids1);
else
[~,r] = qr([A y]');
k = size(A,1)+(1-inst_nbr:0);
r1 = r(end,k)';
end
if options_.steadystate_flag
resids = r1;
else
resids = [res(M_.ramsey_orig_endo_nbr+(1:M_.orig_endo_nbr-inst_nbr)); r1];
end
if needs_set_auxiliary_variables
steady_state = s_a_v_func([xx(1:M_.ramsey_orig_endo_nbr); mult]);
else
steady_state = [xx(1:M_.ramsey_orig_endo_nbr); mult];
end
function result = check_static_model(ys,exo_ss,M_,options_)
result = false;
if (options_.bytecode)
res = bytecode('static', M_, options_, ys, exo_ss, M_.params, 'evaluate');
else
res = feval([M_.fname '.sparse.static_resid'], ys, exo_ss, M_.params);
end
if norm(res) < options_.solve_tolf
result = true;
end
|