1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
function [fh,xh,gh,H,itct,fcount,retcodeh] = csminwel1(fcn,x0,H0,grad,crit,nit,method,epsilon,Verbose,Save_files,varargin)
%[fhat,xhat,ghat,Hhat,itct,fcount,retcodeh] = csminwel1(fcn,x0,H0,grad,crit,nit,method,epsilon,varargin)
% Inputs:
% fcn: [string] string naming the objective function to be minimized
% x0: [npar by 1] initial value of the parameter vector
% H0: [npar by npar] initial value for the inverse Hessian. Must be positive definite.
% grad: [string or boolean] Either a string naming a function that calculates the gradient, or a boolean
% indicating whether the function returns a gradient (column) vector. If false, the program
% calculates a numerical gradient.
% crit: [scalar] Convergence criterion. Iteration will cease when it proves impossible to improve the
% function value by more than crit.
% nit: [scalar] Maximum number of iterations.
% method: [scalar] integer scalar for selecting gradient method: 2, 3 or 5 points formula.
% epsilon: [scalar] scalar double, numerical differentiation increment
% varargin: Optional additional inputs that get handed off to fcn each
% time it is called.
%
% Note that if the program ends abnormally, it is possible to retrieve the current x,
% f, and H from the files g1.mat and H.mat that are written at each iteration and at each
% hessian update, respectively. (When the routine hits certain kinds of difficulty, it
% writes g2.mat and g3.mat as well. If all were written at about the same time, any of them
% may be a decent starting point. One can also start from the one with best function value.)
%
% Outputs:
% fh: [scalar] function value at minimum
% xh: [npar by 1] parameter vector at minimum
% gh [npar by 1] gradient vector
% H [npar by npar] inverse of the Hessian matrix
% itct [scalar] iteration count upon termination
% fcount [scalar] function iteration count upon termination
% retcodeh [scalar] return code:
% 0: normal step
% 1: zero gradient
% 2: back and forth on step length never finished
% 3: smallest step still improving too slow
% 4: back and forth on step length never finished
% 5: largest step still improving too fast
% 6: smallest step still improving too slow, reversed gradient
% 7: warning: possible inaccuracy in H matrix
%
% Original file downloaded from:
% http://sims.princeton.edu/yftp/optimize/mfiles/csminwel.m
%
% Copyright © 1993-2007 Christopher Sims
% Copyright © 2006-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
% initialize variable penalty
penalty = 1e8;
fh = [];
xh = [];
[nx,no]=size(x0);
nx=max(nx,no);
NumGrad= isempty(grad);
done=0;
itct=0;
fcount=0;
gh = [];
H = [];
retcodeh = [];
% force fcn, grad to function handle
if ischar(fcn)
fcn = str2func(fcn);
end
if ischar(grad)
grad = str2func(grad);
grad_fun_provided = true;
else
grad_fun_provided = false;
end
%tailstr = ')';
%stailstr = [];
% Lines below make the number of Pi's optional. This is inefficient, though, and precludes
% use of the matlab compiler. Without them, we use feval and the number of Pi's must be
% changed with the editor for each application. Places where this is required are marked
% with ARGLIST comments
%for i=nargin-6:-1:1
% tailstr=[ ',P' num2str(i) tailstr];
% stailstr=[' P' num2str(i) stailstr];
%end
[f0,cost_flag,arg1] = penalty_objective_function(x0,fcn,penalty,varargin{:});
if ~cost_flag
disp_verbose('Bad initial parameter.',Verbose)
return
end
if NumGrad
[g, badg]=get_num_grad(method,fcn,penalty,f0,x0,epsilon,varargin{:});
elseif grad_fun_provided
[g,badg] = grad(x0,varargin{:});
else
g=arg1;
badg=0;
end
x=x0;
f=f0;
H=H0;
while ~done
% penalty for dsge_likelihood and dsge_var_likelihood
penalty = f;
g1=[]; g2=[]; g3=[];
disp_verbose('-----------------',Verbose)
disp_verbose(sprintf('f at the beginning of new iteration, %20.10f',f),Verbose)
itct=itct+1;
[f1, x1, fc, retcode1] = csminit1(fcn,x,penalty,f,g,badg,H,Verbose,varargin{:});
fcount = fcount+fc;
if retcode1 ~= 1
if retcode1==2 || retcode1==4
wall1=1; badg1=1;
else
if NumGrad
[g1, badg1]=get_num_grad(method,fcn,penalty,f1,x1,epsilon,varargin{:});
elseif grad_fun_provided
[g1, badg1] = grad(x1,varargin{:});
else
[~,cost_flag,g1] = penalty_objective_function(x1,fcn,penalty,varargin{:});
badg1 = ~cost_flag;
end
wall1=badg1;
% g1
if Save_files
save('g1.mat','g1','x1','f1','varargin');
end
end
if wall1
Hcliff=H+diag(diag(H).*rand(nx,1));
disp_verbose('Cliff. Perturbing search direction.',Verbose)
[f2, x2, fc, retcode2] = csminit1(fcn,x,penalty,f,g,badg,Hcliff,Verbose,varargin{:});
fcount = fcount+fc;
if f2 < f
if retcode2==2 || retcode2==4
wall2=1; badg2=1;
else
if NumGrad
[g2, badg2]=get_num_grad(method,fcn,penalty,f2,x2,epsilon,varargin{:});
elseif grad_fun_provided
[g2, badg2] = grad(x2,varargin{:});
else
[~,cost_flag,g2] = penalty_objective_function(x1,fcn,penalty,varargin{:});
badg2 = ~cost_flag;
end
wall2=badg2;
% g2
if Verbose
disp_verbose(sprintf('Value of bad gradient 2: %u\n',badg2),Verbose)
end
if Save_files
save('g2.mat','g2','x2','f2','varargin');
end
end
if wall2
disp_verbose('Cliff again. Try traversing',Verbose)
if norm(x2-x1) < 1e-13
f3=f; x3=x; badg3=1;retcode3=101;
else
gcliff=((f2-f1)/((norm(x2-x1))^2))*(x2-x1);
if(size(x0,2)>1)
gcliff=gcliff';
end
[f3, x3, fc, retcode3] = csminit1(fcn,x,penalty,f,gcliff,0,eye(nx),Verbose,varargin{:});
fcount = fcount+fc; % put by Jinill
if retcode3==2 || retcode3==4
badg3=1;
else
if NumGrad
[g3, badg3]=get_num_grad(method,fcn,penalty,f3,x3,epsilon,varargin{:});
elseif grad_fun_provided
[g3, badg3] = grad(x3,varargin{:});
else
[~,cost_flag,g3] = penalty_objective_function(x1,fcn,penalty,varargin{:});
badg3 = ~cost_flag;
end
% g3
if Save_files
save('g3.mat','g3','x3','f3','varargin');
end
end
end
else
f3=f; x3=x; badg3=1; retcode3=101;
end
else
f3=f; x3=x; badg3=1;retcode3=101;
end
else
% normal iteration, no walls, or else we're finished here.
f2=f; f3=f; badg2=1; badg3=1; retcode2=101; retcode3=101;
end
else
f2=f;f3=f;f1=f;retcode2=retcode1;retcode3=retcode1;
end
%how to pick gh and xh
if f3 < f - crit && badg3==0 && f3 < f2 && f3 < f1 %f3 has improved function, gradient is good and it is smaller than the other two
fh=f3;xh=x3;gh=g3;badgh=badg3;retcodeh=retcode3;
elseif f2 < f - crit && badg2==0 && f2 < f1 %f2 has improved function, gradient is good and it is smaller than f2
fh=f2;xh=x2;gh=g2;badgh=badg2;retcodeh=retcode2;
elseif f1 < f - crit && badg1==0 %f1 has improved function, gradient is good
fh=f1;xh=x1;gh=g1;badgh=badg1;retcodeh=retcode1;
else % stuck or bad gradient
[fh,ih] = min([f1,f2,f3]);
%disp_verbose(sprintf('ih = %d',ih))
%eval(['xh=x' num2str(ih) ';'])
switch ih
case 1
xh=x1;
case 2
xh=x2;
case 3
xh=x3;
end %case
retcodei=[retcode1,retcode2,retcode3];
retcodeh=retcodei(ih);
nogh=isempty(gh);
badgh=1;
if nogh %recompute gradient
if NumGrad
[gh, badgh]=get_num_grad(method,fcn,penalty,fh,xh,epsilon,varargin{:});
elseif grad_fun_provided
[gh, badgh] = grad(xh,varargin{:});
else
[~,cost_flag,gh] = penalty_objective_function(x1,fcn,penalty,varargin{:});
badgh = ~cost_flag;
end
end
end
%end of picking
stuck = (abs(fh-f) < crit);
if (~badg) && (~badgh) && (~stuck)
H = bfgsi1(H,gh-g,xh-x,Verbose,Save_files);
end
disp_verbose('----',Verbose)
disp_verbose(sprintf('Improvement on iteration %d = %18.9f',itct,f-fh),Verbose)
% if Verbose
if itct > nit
disp_verbose('iteration count termination',Verbose)
done = 1;
elseif stuck
disp_verbose('improvement < crit termination',Verbose)
done = 1;
end
rc=retcodeh;
if Verbose || done
if rc ==0
%do nothing, just a normal step
elseif rc == 1
disp_verbose('zero gradient',Verbose)
elseif rc == 6
disp_verbose('smallest step still improving too slow, reversed gradient',Verbose)
elseif rc == 5
disp_verbose('largest step still improving too fast',Verbose)
elseif (rc == 4) || (rc==2)
disp_verbose('back and forth on step length never finished',Verbose)
elseif rc == 3
disp_verbose('smallest step still improving too slow',Verbose)
elseif rc == 7
disp_verbose('warning: possible inaccuracy in H matrix',Verbose)
else
error('Unaccounted Case, please contact the developers')
end
end
f=fh;
x=xh;
g=gh;
badg=badgh;
end
end
function [g, badg]=get_num_grad(method,fcn,penalty,f0,x0,epsilon,varargin)
switch method
case 2
[g,badg] = numgrad2(fcn, f0, x0, penalty, epsilon, varargin{:});
case 3
[g,badg] = numgrad3(fcn, f0, x0, penalty, epsilon, varargin{:});
case 5
[g,badg] = numgrad5(fcn, f0, x0, penalty, epsilon, varargin{:});
case 13
[g,badg] = numgrad3_(fcn, f0, x0, penalty, epsilon, varargin{:});
case 15
[g,badg] = numgrad5_(fcn, f0, x0, penalty, epsilon, varargin{:});
otherwise
error('csminwel1: Unknown method for gradient evaluation!')
end
end
|