File: csminwel1.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (304 lines) | stat: -rw-r--r-- 12,141 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
function [fh,xh,gh,H,itct,fcount,retcodeh] = csminwel1(fcn,x0,H0,grad,crit,nit,method,epsilon,Verbose,Save_files,varargin)
%[fhat,xhat,ghat,Hhat,itct,fcount,retcodeh] = csminwel1(fcn,x0,H0,grad,crit,nit,method,epsilon,varargin)
% Inputs:
%   fcn:    [string]        string naming the objective function to be minimized
%   x0:     [npar by 1]     initial value of the parameter vector
%   H0:     [npar by npar]  initial value for the inverse Hessian.  Must be positive definite.
%   grad:   [string or boolean] Either a string naming a function that calculates the gradient, or a boolean
%                           indicating whether the function returns a gradient (column) vector. If false, the program 
%                           calculates a numerical gradient.  
%   crit:   [scalar]        Convergence criterion.  Iteration will cease when it proves impossible to improve the
%                           function value by more than crit.
%   nit:    [scalar]        Maximum number of iterations.
%   method: [scalar]        integer scalar for selecting gradient method: 2, 3 or 5 points formula.
%   epsilon: [scalar]       scalar double, numerical differentiation increment
%   varargin:               Optional additional inputs that get handed off to fcn each
%                           time it is called.
%
%        Note that if the program ends abnormally, it is possible to retrieve the current x,
%        f, and H from the files g1.mat and H.mat that are written at each iteration and at each
%        hessian update, respectively.  (When the routine hits certain kinds of difficulty, it
%        writes g2.mat and g3.mat as well. If all were written at about the same time, any of them
%        may be a decent starting point. One can also start from the one with best function value.)
%
% Outputs:
%   fh:     [scalar]        function value at minimum
%   xh:     [npar by 1]     parameter vector at minimum
%   gh      [npar by 1]     gradient vector
%   H       [npar by npar]  inverse of the Hessian matrix
%   itct    [scalar]        iteration count upon termination
%   fcount  [scalar]        function iteration count upon termination
%   retcodeh [scalar]       return code:
%                               0: normal step
%                               1: zero gradient
%                               2: back and forth on step length never finished
%                               3: smallest step still improving too slow
%                               4: back and forth on step length never finished
%                               5: largest step still improving too fast
%                               6: smallest step still improving too slow, reversed gradient
%                               7: warning: possible inaccuracy in H matrix
%
% Original file downloaded from:
% http://sims.princeton.edu/yftp/optimize/mfiles/csminwel.m
%
% Copyright © 1993-2007 Christopher Sims
% Copyright © 2006-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

% initialize variable penalty
penalty = 1e8;
fh = [];
xh = [];
[nx,no]=size(x0);
nx=max(nx,no);
NumGrad= isempty(grad);
done=0;
itct=0;
fcount=0;
gh = [];
H = [];
retcodeh = [];

% force fcn, grad to function handle
if ischar(fcn)
    fcn = str2func(fcn);
end
if ischar(grad)
    grad = str2func(grad);
    grad_fun_provided = true;
else
    grad_fun_provided = false;
end
%tailstr = ')';
%stailstr = [];
% Lines below make the number of Pi's optional.  This is inefficient, though, and precludes
% use of the matlab compiler.  Without them, we use feval and the number of Pi's must be
% changed with the editor for each application.  Places where this is required are marked
% with ARGLIST comments
%for i=nargin-6:-1:1
%   tailstr=[ ',P' num2str(i)  tailstr];
%   stailstr=[' P' num2str(i) stailstr];
%end

[f0,cost_flag,arg1] = penalty_objective_function(x0,fcn,penalty,varargin{:});

if ~cost_flag
    disp_verbose('Bad initial parameter.',Verbose)
    return
end

if NumGrad
    [g, badg]=get_num_grad(method,fcn,penalty,f0,x0,epsilon,varargin{:});
elseif grad_fun_provided
    [g,badg] = grad(x0,varargin{:});
else
    g=arg1;
    badg=0;
end
x=x0;
f=f0;
H=H0;
while ~done
    % penalty for dsge_likelihood and dsge_var_likelihood
    penalty = f;

    g1=[]; g2=[]; g3=[];
    disp_verbose('-----------------',Verbose)
    disp_verbose(sprintf('f at the beginning of new iteration, %20.10f',f),Verbose)
    itct=itct+1;
    [f1, x1, fc, retcode1] = csminit1(fcn,x,penalty,f,g,badg,H,Verbose,varargin{:});
    fcount = fcount+fc;
    if retcode1 ~= 1
        if retcode1==2 || retcode1==4
            wall1=1; badg1=1;
        else
            if NumGrad
                [g1, badg1]=get_num_grad(method,fcn,penalty,f1,x1,epsilon,varargin{:});
            elseif grad_fun_provided
                [g1, badg1] = grad(x1,varargin{:});
            else
                [~,cost_flag,g1] = penalty_objective_function(x1,fcn,penalty,varargin{:});
                badg1 = ~cost_flag;
            end
            wall1=badg1;
            % g1
            if Save_files
                save('g1.mat','g1','x1','f1','varargin');
            end
        end
        if wall1 
            Hcliff=H+diag(diag(H).*rand(nx,1));
            disp_verbose('Cliff.  Perturbing search direction.',Verbose)
            [f2, x2, fc, retcode2] = csminit1(fcn,x,penalty,f,g,badg,Hcliff,Verbose,varargin{:});
            fcount = fcount+fc;
            if  f2 < f
                if retcode2==2 || retcode2==4
                    wall2=1; badg2=1;
                else
                    if NumGrad
                        [g2, badg2]=get_num_grad(method,fcn,penalty,f2,x2,epsilon,varargin{:});
                    elseif grad_fun_provided
                        [g2, badg2] = grad(x2,varargin{:});
                    else
                        [~,cost_flag,g2] = penalty_objective_function(x1,fcn,penalty,varargin{:});
                        badg2 = ~cost_flag;
                    end
                    wall2=badg2;
                    % g2
                    if Verbose
                        disp_verbose(sprintf('Value of bad gradient 2: %u\n',badg2),Verbose)
                    end
                    if Save_files
                        save('g2.mat','g2','x2','f2','varargin');
                    end
                end
                if wall2
                    disp_verbose('Cliff again.  Try traversing',Verbose)
                    if norm(x2-x1) < 1e-13
                        f3=f; x3=x; badg3=1;retcode3=101;
                    else
                        gcliff=((f2-f1)/((norm(x2-x1))^2))*(x2-x1);
                        if(size(x0,2)>1)
                            gcliff=gcliff';
                        end
                        [f3, x3, fc, retcode3] = csminit1(fcn,x,penalty,f,gcliff,0,eye(nx),Verbose,varargin{:});
                        fcount = fcount+fc; % put by Jinill
                        if retcode3==2 || retcode3==4
                            badg3=1;
                        else
                            if NumGrad
                                [g3, badg3]=get_num_grad(method,fcn,penalty,f3,x3,epsilon,varargin{:});
                            elseif grad_fun_provided
                                [g3, badg3] = grad(x3,varargin{:});
                            else
                                [~,cost_flag,g3] = penalty_objective_function(x1,fcn,penalty,varargin{:});
                                badg3 = ~cost_flag;
                            end
                            % g3
                            if Save_files
                                save('g3.mat','g3','x3','f3','varargin');
                            end
                        end
                    end
                else
                    f3=f; x3=x; badg3=1; retcode3=101;
                end
            else
                f3=f; x3=x; badg3=1;retcode3=101;
            end
        else
            % normal iteration, no walls, or else we're finished here.
            f2=f; f3=f; badg2=1; badg3=1; retcode2=101; retcode3=101;
        end
    else
        f2=f;f3=f;f1=f;retcode2=retcode1;retcode3=retcode1;
    end
    %how to pick gh and xh
    if f3 < f - crit && badg3==0 && f3 < f2 && f3 < f1  %f3 has improved function, gradient is good and it is smaller than the other two
        fh=f3;xh=x3;gh=g3;badgh=badg3;retcodeh=retcode3;
    elseif f2 < f - crit && badg2==0 && f2 < f1         %f2 has improved function, gradient is good and it is smaller than f2
        fh=f2;xh=x2;gh=g2;badgh=badg2;retcodeh=retcode2;
    elseif f1 < f - crit && badg1==0                    %f1 has improved function, gradient is good
        fh=f1;xh=x1;gh=g1;badgh=badg1;retcodeh=retcode1;
    else                                                % stuck or bad gradient
        [fh,ih] = min([f1,f2,f3]);
        %disp_verbose(sprintf('ih = %d',ih))
        %eval(['xh=x' num2str(ih) ';'])
        switch ih
          case 1
            xh=x1;
          case 2
            xh=x2;
          case 3
            xh=x3;
        end %case
        retcodei=[retcode1,retcode2,retcode3];
        retcodeh=retcodei(ih);
        
        nogh=isempty(gh);        
        badgh=1;
        if nogh %recompute gradient
            if NumGrad
                [gh, badgh]=get_num_grad(method,fcn,penalty,fh,xh,epsilon,varargin{:});
            elseif grad_fun_provided
                [gh, badgh] = grad(xh,varargin{:});
            else
                [~,cost_flag,gh] = penalty_objective_function(x1,fcn,penalty,varargin{:});
                badgh = ~cost_flag;
            end
        end
    end
    %end of picking
    stuck = (abs(fh-f) < crit);
    if (~badg) && (~badgh) && (~stuck)
        H = bfgsi1(H,gh-g,xh-x,Verbose,Save_files);
    end
    disp_verbose('----',Verbose)
    disp_verbose(sprintf('Improvement on iteration %d = %18.9f',itct,f-fh),Verbose)
    % if Verbose
    if itct > nit
        disp_verbose('iteration count termination',Verbose)
        done = 1;
    elseif stuck
        disp_verbose('improvement < crit termination',Verbose)
        done = 1;
    end
    rc=retcodeh;
    if Verbose || done
        if rc ==0
            %do nothing, just a normal step
        elseif rc == 1
            disp_verbose('zero gradient',Verbose)
        elseif rc == 6
            disp_verbose('smallest step still improving too slow, reversed gradient',Verbose)
        elseif rc == 5
            disp_verbose('largest step still improving too fast',Verbose)
        elseif (rc == 4) || (rc==2)
            disp_verbose('back and forth on step length never finished',Verbose)
        elseif rc == 3
            disp_verbose('smallest step still improving too slow',Verbose)
        elseif rc == 7
            disp_verbose('warning: possible inaccuracy in H matrix',Verbose)
        else
            error('Unaccounted Case, please contact the developers')
        end
    end

    f=fh;
    x=xh;
    g=gh;
    badg=badgh;
end

end

function [g, badg]=get_num_grad(method,fcn,penalty,f0,x0,epsilon,varargin)
switch method
  case 2
    [g,badg] = numgrad2(fcn, f0, x0, penalty, epsilon, varargin{:});
  case 3
    [g,badg] = numgrad3(fcn, f0, x0, penalty, epsilon, varargin{:});
  case 5
    [g,badg] = numgrad5(fcn, f0, x0, penalty, epsilon, varargin{:});
  case 13
    [g,badg] = numgrad3_(fcn, f0, x0, penalty, epsilon, varargin{:});
  case 15
    [g,badg] = numgrad5_(fcn, f0, x0, penalty, epsilon, varargin{:});
  otherwise
    error('csminwel1: Unknown method for gradient evaluation!')
end
end