1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
function [x, errorflag, fvec, fjac, errorcode] = dynare_solve(f, x, maxit, tolf, tolx, options, varargin)
% Solves a nonlinear system of equations, f(x) = 0 with n unknowns
% and n equations.
%
% INPUTS
% - f [char, fhandle] function to be solved
% - x [double] n×1 vector, initial guess.
% - options [struct] Dynare options, aka options_.
% - varargin list of additional arguments to be passed to func.
%
% OUTPUTS
% - x [double] n×1 vector, solution.
% - errorflag [logical] scalar, true iff the model can not be solved.
% - fvec [double] n×1 vector, function value at x (f(x), used for debugging when errorflag is true).
% - fjac [double] n×n matrix, Jacobian value at x (J(x), used for debugging when errorflag is true).
% - errorcode [integer] scalar.
%
% REMARKS
% Interpretation of the error code depends on the algorithm, except if value of errorcode is
%
% -10 -> System of equation ill-behaved at the initial guess (Inf, Nans or complex numbers).
% -11 -> Initial guess is a solution of the system of equations.
% Copyright © 2001-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
jacobian_flag = options.jacobian_flag; % true iff Jacobian is returned by f routine (as a second output argument).
errorflag = false; % Let's be optimistic!
nn = size(x,1);
% Keep a copy of the initial guess.
x0 = x;
% Get status of the initial guess (default values?)
if any(x)
% The current initial guess is not the default for all the variables.
idx = find(x); % Indices of the variables with default initial guess values.
in0 = length(idx);
else
% The current initial guess is the default for all the variables.
idx = transpose(1:nn);
in0 = nn;
end
% checking initial values
if jacobian_flag
[fvec, fjac] = feval(f, x, varargin{:});
wrong_initial_guess_flag = false;
if ~all(isfinite(fvec)) || any(isinf(fjac(:))) || any(isnan((fjac(:)))) || any(~isreal(fvec)) || any(~isreal(fjac(:)))
if ~ismember(options.solve_algo,[10,11]) && ~any(isnan(fvec)) && max(abs(fvec))< tolf
% return if initial value solves the problem except if a mixed complementarity problem is to be solved (complementarity conditions may not be satisfied)
% max([NaN, 0])=0, so explicitly exclude the case where fvec contains a NaN
errorcode = -11;
return;
end
if options.solve_randomize_initial_guess
if any(~isreal(fvec)) || any(~isreal(fjac(:)))
disp_verbose('dynare_solve: starting value results in complex values. Randomize initial guess...', options.verbosity)
else
disp_verbose('dynare_solve: starting value results in nonfinite/NaN value. Randomize initial guess...', options.verbosity)
end
% Let's try random numbers for the variables initialized with the default value.
wrong_initial_guess_flag = true;
% First try with positive numbers.
tentative_number = 0;
while wrong_initial_guess_flag && tentative_number<=in0*10
tentative_number = tentative_number+1;
x(idx) = rand(in0, 1)*10;
[fvec, fjac] = feval(f, x, varargin{:});
wrong_initial_guess_flag = ~all(isfinite(fvec)) || any(isinf(fjac(:))) || any(isnan((fjac(:)))) || any(~isreal(fvec)) || any(~isreal(fjac(:)));
end
% If all previous attempts failed, try with real numbers.
tentative_number = 0;
while wrong_initial_guess_flag && tentative_number<=in0*10
tentative_number = tentative_number+1;
x(idx) = randn(in0, 1)*10;
[fvec, fjac] = feval(f, x, varargin{:});
wrong_initial_guess_flag = ~all(isfinite(fvec)) || any(isinf(fjac(:))) || any(isnan((fjac(:)))) || any(~isreal(fvec)) || any(~isreal(fjac(:)));
end
% Last tentative, ff all previous attempts failed, try with negative numbers.
tentative_number = 0;
while wrong_initial_guess_flag && tentative_number<=in0*10
tentative_number = tentative_number+1;
x(idx) = -rand(in0, 1)*10;
[fvec, fjac] = feval(f, x, varargin{:});
wrong_initial_guess_flag = ~all(isfinite(fvec)) || any(isinf(fjac(:))) || any(isnan((fjac(:)))) || any(~isreal(fvec)) || any(~isreal(fjac(:)));
end
end
end
else
fvec = feval(f, x, varargin{:});
fjac = zeros(nn, nn);
if ~ismember(options.solve_algo,[10,11]) && ~any(isnan(fvec)) && max(abs(fvec)) < tolf
% return if initial value solves the problem except if a mixed complementarity problem is to be solved (complementarity conditions may not be satisfied)
% max([NaN, 0])=0, so explicitly exclude the case where fvec contains a NaN
errorcode = -11;
return;
end
wrong_initial_guess_flag = false;
if ~all(isfinite(fvec))
% Let's try random numbers for the variables initialized with the default value.
wrong_initial_guess_flag = true;
% First try with positive numbers.
tentative_number = 0;
while wrong_initial_guess_flag && tentative_number<=in0*10
tentative_number = tentative_number+1;
x(idx) = rand(in0, 1)*10;
fvec = feval(f, x, varargin{:});
wrong_initial_guess_flag = ~all(isfinite(fvec));
end
% If all previous attempts failed, try with real numbers.
tentative_number = 0;
while wrong_initial_guess_flag && tentative_number<=in0*10
tentative_number = tentative_number+1;
x(idx) = randn(in0, 1)*10;
fvec = feval(f, x, varargin{:});
wrong_initial_guess_flag = ~all(isfinite(fvec));
end
% Last tentative, ff all previous attempts failed, try with negative numbers.
tentative_number = 0;
while wrong_initial_guess_flag && tentative_number<=in0*10
tentative_number = tentative_number+1;
x(idx) = -rand(in0, 1)*10;
fvec = feval(f, x, varargin{:});
wrong_initial_guess_flag = ~all(isfinite(fvec));
end
end
end
% Exit with error if no initial guess has been found.
if wrong_initial_guess_flag
errorcode = -10;
errorflag = true;
x = x0;
return
end
if options.solve_algo == 0
if ~isoctave
if ~user_has_matlab_license('optimization_toolbox')
error('You can''t use solve_algo=0 since you don''t have MATLAB''s Optimization Toolbox')
end
end
if isoctave
options4fsolve = optimset('fsolve');
else
options4fsolve = optimoptions('fsolve');
end
if isoctave
options4fsolve.MaxFunEvals = 50000;
options4fsolve.MaxIter = maxit;
options4fsolve.TolFun = tolf;
options4fsolve.TolX = tolx;
if jacobian_flag
options4fsolve.Jacobian = 'on';
else
options4fsolve.Jacobian = 'off';
end
else
options4fsolve.MaxFunctionEvaluations = 50000;
options4fsolve.MaxIterations = maxit;
options4fsolve.FunctionTolerance = tolf;
options4fsolve.StepTolerance = tolx;
options4fsolve.SpecifyObjectiveGradient = jacobian_flag;
end
%% NB: The Display option is accepted but not honoured under Octave (as of version 7)
if options.debug
options4fsolve.Display = 'final';
else
options4fsolve.Display = 'off';
end
%% This one comes last, so that the user can override Dynare
if ~isempty(options.fsolve_options)
if isoctave
eval(['options4fsolve = optimset(options4fsolve,' options.fsolve_options ');']);
else
eval(['options4fsolve = optimoptions(options4fsolve,' options.fsolve_options ');']);
end
end
if ~isoctave
[x, fvec, errorcode, ~, fjac] = fsolve(f, x, options4fsolve, varargin{:});
else
% Under Octave, use a wrapper, since fsolve() does not have a 4th arg
if ischar(f)
f2 = str2func(f);
else
f2 = f;
end
[x, fvec, errorcode, ~, fjac] = fsolve(@(x) f2(x, varargin{:}), x, options4fsolve);
end
if errorcode==1
errorflag = false;
elseif errorcode>1
if max(abs(fvec)) > tolf
errorflag = true;
else
errorflag = false;
end
else
errorflag = true;
end
elseif ismember(options.solve_algo, [1, 12])
%% NB: It is the responsibility of the caller to deal with the block decomposition if solve_algo=12
[x, errorflag, errorcode] = solve1(f, x, 1:nn, 1:nn, jacobian_flag, options.gstep, tolf, tolx, maxit, [], options.debug, varargin{:});
[fvec, fjac] = feval(f, x, varargin{:});
elseif options.solve_algo==9
[x, errorflag, errorcode] = trust_region(f, x, 1:nn, 1:nn, jacobian_flag, options.gstep, tolf, tolx, maxit, options.trust_region_initial_step_bound_factor, options.debug, varargin{:});
[fvec, fjac] = feval(f, x, varargin{:});
elseif ismember(options.solve_algo, [2, 4])
if options.solve_algo == 2
solver = @solve1;
else
solver = @trust_region;
end
if ~jacobian_flag
fjac = zeros(nn,nn) ;
dh = max(abs(x), options.gstep(1)*ones(nn,1))*eps^(1/3);
for j = 1:nn
xdh = x ;
xdh(j) = xdh(j)+dh(j) ;
fjac(:,j) = (feval(f, xdh, varargin{:})-fvec)./dh(j) ;
end
end
[j1,j2,r,s] = dmperm(fjac);
if options.debug
disp(['DYNARE_SOLVE (solve_algo=2|4): number of blocks = ' num2str(length(r)-1)]);
end
for i=length(r)-1:-1:1
blocklength = r(i+1)-r(i);
j = r(i):r(i+1)-1;
blockcolumns=s(i+1)-s(i);
if blockcolumns ~= blocklength
%non-square-block in DM; check whether initial value is solution
[fval_check, fjac] = feval(f, x, varargin{:});
if norm(fval_check(j1(j))) < tolf
errorflag = false;
errorcode = 0;
continue
end
end
if blockcolumns>=blocklength
%(under-)determined block
[x, errorflag, errorcode] = solver(f, x, j1(j), j2(j), jacobian_flag, ...
options.gstep, ...
tolf, options.solve_tolx, maxit, ...
options.trust_region_initial_step_bound_factor, ...
options.debug, varargin{:});
else
fprintf('\nDYNARE_SOLVE (solve_algo=2|4): the Dulmage-Mendelsohn decomposition returned a non-square block. This means that the Jacobian is singular. You may want to try another value for solve_algo.\n')
%overdetermined block
errorflag = true;
errorcode = 0;
end
if errorflag
return
end
end
fvec = feval(f, x, varargin{:});
if max(abs(fvec))>tolf
disp_verbose('Call solver on the full nonlinear problem.',options.verbosity)
[x, errorflag, errorcode] = solver(f, x, 1:nn, 1:nn, jacobian_flag, ...
options.gstep, tolf, options.solve_tolx, maxit, ...
options.trust_region_initial_step_bound_factor, ...
options.debug, varargin{:});
end
[fvec, fjac] = feval(f, x, varargin{:});
elseif options.solve_algo==3
if jacobian_flag
[x, errorcode] = csolve(f, x, f, tolf, maxit, varargin{:});
else
[x, errorcode] = csolve(f, x, [], tolf, maxit, varargin{:});
end
if errorcode==0
errorflag = false;
else
errorflag = true;
end
[fvec, fjac] = feval(f, x, varargin{:});
elseif options.solve_algo==10
% LMMCP
olmmcp = options.lmmcp;
[x, fvec, errorcode, ~, fjac] = lmmcp(f, x, olmmcp.lb, olmmcp.ub, olmmcp, varargin{:});
eq_to_check=find(isfinite(olmmcp.lb) | isfinite(olmmcp.ub));
eq_to_ignore=eq_to_check(x(eq_to_check,:)<=olmmcp.lb(eq_to_check)+eps | x(eq_to_check,:)>=olmmcp.ub(eq_to_check)-eps);
fvec(eq_to_ignore)=0;
if errorcode==1
errorflag = false;
else
errorflag = true;
end
elseif options.solve_algo == 11
% PATH mixed complementary problem
% PATH linear mixed complementary problem
if ~exist('mcppath')
error(['PATH can''t be provided with Dynare. You need to install it ' ...
'yourself and add its location to Matlab/Octave path before ' ...
'running Dynare'])
end
omcppath = options.mcppath;
global mcp_data
mcp_data.func = f;
mcp_data.args = varargin;
try
x = pathmcp(x,omcppath.lb,omcppath.ub,'mcp_func',omcppath.A,omcppath.b,omcppath.t,omcppath.mu0);
catch
errorflag = true;
end
errorcode = nan; % There is no error code for this algorithm, as PATH is closed source it is unlikely we can fix that.
eq_to_check=find(isfinite(omcppath.lb) | isfinite(omcppath.ub));
eq_to_ignore=eq_to_check(x(eq_to_check,:)<=omcppath.lb(eq_to_check)+eps | x(eq_to_check,:)>=omcppath.ub(eq_to_check)-eps);
fvec(eq_to_ignore)=0;
elseif ismember(options.solve_algo, [13, 14])
%% NB: It is the responsibility of the caller to deal with the block decomposition if solve_algo=14
if ~jacobian_flag
error('DYNARE_SOLVE: option solve_algo=13 needs computed Jacobian')
end
[x, errorflag, errorcode] = block_trust_region(f, x, tolf, options.solve_tolx, maxit, ...
options.trust_region_initial_step_bound_factor, ...
options.solve_algo == 13, ... % Only block-decompose with Dulmage-Mendelsohn for 13, not for 14
options.debug, varargin{:});
[fvec, fjac] = feval(f, x, varargin{:});
else
error('DYNARE_SOLVE: option solve_algo must be one of [0,1,2,3,4,9,10,11,12,13,14]')
end
|