1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
function [y, T, success, max_res, iter] = solve_one_boundary(fh, y, x, params, steady_state, T, ...
y_index_eq, nze, periods, is_linear, Block_Num, y_kmin, maxit_, solve_tolf, cutoff, stack_solve_algo, is_forward, is_dynamic, verbose, M_, options_)
% Computes the deterministic simulation or the steady state for a block of equations containing
% only lags or only leads (but not both).
%
% INPUTS
% fh [handle] function handle to the static/dynamic file for the block
% y [matrix] All the endogenous variables of the model
% x [matrix] All the exogenous variables of the model
% params [vector] All the parameters of the model
% steady_state [vector] steady state of the model
% T [matrix] Temporary terms
% y_index_eq [vector of int] The index of the endogenous variables of
% the block
% nze [integer] number of non-zero elements in the
% jacobian matrix
% periods [integer] number of simulation periods
% is_linear [logical] whether the block is linear
% Block_Num [integer] block number
% y_kmin [integer] maximum number of lag in the model
% maxit_ [integer] maximum number of iteration in Newton
% solve_tolf [double] convergence criteria
% cutoff [double] cutoff to correct the direction in Newton in case
% of singular jacobian matrix
% stack_solve_algo [integer] linear solver method used in the Newton algorithm
% is_forward [logical] Whether the block has to be solved forward
% If false, the block is solved backward
% is_dynamic [logical] Whether this is a deterministic simulation
% verbose [logical] Whether iterations are to be printed
% M_ [structure] storing the model information
% options_ [structure] storing the options
%
% OUTPUTS
% y [matrix] All endogenous variables of the model
% T [matrix] Temporary terms
% success [logical] Whether a solution was found
% max_res [double] ∞-norm of the residual
% iter [integer] Number of iterations
%
% ALGORITHM
% Newton with LU or GMRES or BicGstab for dynamic block
% Copyright © 1996-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
Blck_size=size(y_index_eq,2);
correcting_factor=0.01;
ilu_setup.type='crout';
ilu_setup.droptol=1e-10;
max_resa=1e100;
lambda = 1; % Length of Newton step
reduced = 0;
if is_forward
incr = 1;
start = y_kmin+1;
finish = periods+y_kmin;
else
incr = -1;
start = periods+y_kmin;
finish = y_kmin+1;
end
for it_=start:incr:finish
cvg=false;
iter=0;
g1=spalloc( Blck_size, Blck_size, nze);
while ~(cvg || iter>maxit_)
if is_dynamic
[yy, T(:, it_), r, g1] = fh(dynendo(y, it_, M_), x(it_, :), params, steady_state, ...
M_.block_structure.block(Block_Num).g1_sparse_rowval, ...
M_.block_structure.block(Block_Num).g1_sparse_colval, ...
M_.block_structure.block(Block_Num).g1_sparse_colptr, T(:, it_));
y(:, it_) = yy(M_.endo_nbr+(1:M_.endo_nbr));
else
[y, T, r, g1] = fh(y, x, params, M_.block_structure_stat.block(Block_Num).g1_sparse_rowval, ...
M_.block_structure_stat.block(Block_Num).g1_sparse_colval, ...
M_.block_structure_stat.block(Block_Num).g1_sparse_colptr, T);
end
if ~isreal(r)
max_res=(-(max(max(abs(r))))^2)^0.5;
else
max_res=max(max(abs(r)));
end
if verbose
disp(['iteration : ' int2str(iter+1) ' => ' num2str(max_res) ' time = ' int2str(it_)])
if is_dynamic
disp([char(M_.endo_names{y_index_eq}) repmat(' ', numel(y_index_eq), 1) num2str([y(y_index_eq, it_) r g1])])
else
disp([char(M_.endo_names{y_index_eq}) repmat(' ', numel(y_index_eq), 1) num2str([y(y_index_eq) r g1])])
end
end
if ~isreal(max_res) || isnan(max_res)
cvg = false;
elseif is_linear && iter>0
cvg = true;
else
cvg=(max_res<solve_tolf);
end
if ~cvg
if iter>0
if ~isreal(max_res) || isnan(max_res) || (max_resa<max_res && iter>1)
if isnan(max_res) || (max_resa<max_res && iter>1)
detJ=det(g1a);
if(abs(detJ)<1e-7)
max_factor=max(max(abs(g1a)));
ze_elem=sum(diag(g1a)<cutoff);
if verbose
disp([num2str(full(ze_elem),'%d') ' elements on the Jacobian diagonal are below the cutoff (' num2str(cutoff,'%f') ')'])
end
if correcting_factor<max_factor
correcting_factor=correcting_factor*4;
if verbose
disp(['The Jacobian matrix is singular, det(Jacobian)=' num2str(detJ,'%f') '.'])
disp(' trying to correct the Jacobian matrix:')
disp([' correcting_factor=' num2str(correcting_factor,'%f') ' max(Jacobian)=' num2str(full(max_factor),'%f')])
end
dx = (g1+correcting_factor*speye(Blck_size))\r;
y(y_index_eq, it_)=ya_save-lambda*dx;
continue
else
if verbose
disp('The singularity of the jacobian matrix could not be corrected')
end
success = false;
return
end
end
elseif lambda>1e-8
lambda=lambda/2;
reduced = 1;
if verbose
disp(['reducing the path length: lambda=' num2str(lambda,'%f')])
end
if is_dynamic
y(y_index_eq, it_)=ya_save-lambda*dx;
else
y(y_index_eq)=ya_save-lambda*dx;
end
continue
else
if verbose
if cutoff==0
fprintf('Convergence not achieved in block %d, at time %d, after %d iterations.\n Increase "maxit".\n',Block_Num, it_, iter);
else
fprintf('Convergence not achieved in block %d, at time %d, after %d iterations.\n Increase "maxit" or set "cutoff=0" in model options.\n',Block_Num, it_, iter);
end
end
success = false;
return
end
else
if lambda<1
lambda=max(lambda*2, 1);
end
end
end
if is_dynamic
ya = y(y_index_eq, it_);
else
ya = y(y_index_eq);
end
ya_save=ya;
g1a=g1;
if is_dynamic && stack_solve_algo==4
stpmx = 100 ;
stpmax = stpmx*max([sqrt(ya'*ya);size(y_index_eq,2)]);
nn=1:size(y_index_eq,2);
g = (r'*g1)';
f = 0.5*r'*r;
p = -g1\r ;
ya = lnsrch1(ya,f,g,p,stpmax, ...
@lnsrch1_wrapper_one_boundary,nn, ...
nn, options_.solve_tolx, y_index_eq, fh, Block_Num, y, x, params, steady_state, T(:, it_), it_, M_);
dx = ya - y(y_index_eq, it_);
y(y_index_eq, it_) = ya;
%% Recompute temporary terms, since they are not given as output of lnsrch1
[~, T(:, it_)] = fh(dynendo(y, it_, M_), x(it_, :), params, steady_state, ...
M_.block_structure.block(Block_Num).g1_sparse_rowval, ...
M_.block_structure.block(Block_Num).g1_sparse_colval, ...
M_.block_structure.block(Block_Num).g1_sparse_colptr, T(:, it_));
elseif (is_dynamic && (stack_solve_algo==1 || stack_solve_algo==0 || stack_solve_algo==6)) || (~is_dynamic && options_.solve_algo==6)
if verbose && ~is_dynamic
disp('steady: Sparse LU ')
end
dx = g1\r;
ya = ya - lambda*dx;
if is_dynamic
y(y_index_eq, it_) = ya;
else
y(y_index_eq) = ya;
end
elseif (stack_solve_algo==2 && is_dynamic) || (options_.solve_algo==7 && ~is_dynamic)
flag1=1;
if verbose && ~is_dynamic
disp('steady: GMRES ')
end
while flag1>0
[L1, U1]=ilu(g1,ilu_setup);
[dx,flag1] = gmres(g1,-r,Blck_size,1e-6,Blck_size,L1,U1);
if flag1>0 || reduced
if verbose
if flag1==1
disp(['Error in simul: No convergence inside GMRES after ' num2str(iter,'%6d') ' iterations, in block' num2str(Block_Num,'%3d')])
elseif(flag1==2)
disp(['Error in simul: Preconditioner is ill-conditioned, in block' num2str(Block_Num,'%3d')])
elseif(flag1==3)
disp(['Error in simul: GMRES stagnated (Two consecutive iterates were the same.), in block' num2str(Block_Num,'%3d')])
end
end
ilu_setup.droptol = ilu_setup.droptol/10;
reduced = 0;
else
ya = ya + lambda*dx;
if is_dynamic
y(y_index_eq, it_) = ya;
else
y(y_index_eq) = ya';
end
end
end
elseif (stack_solve_algo==3 && is_dynamic) || (options_.solve_algo==8 && ~is_dynamic)
flag1=1;
if verbose && ~is_dynamic
disp('steady: BiCGStab')
end
while flag1>0
[L1, U1]=ilu(g1,ilu_setup);
[dx,flag1] = bicgstab(g1,-r,1e-6,Blck_size,L1,U1);
if flag1>0 || reduced
if verbose
if(flag1==1)
disp(['Error in simul: No convergence inside BiCGStab after ' num2str(iter,'%6d') ' iterations, in block' num2str(Block_Num,'%3d')])
elseif(flag1==2)
disp(['Error in simul: Preconditioner is ill-conditioned, in block' num2str(Block_Num,'%3d')])
elseif(flag1==3)
disp(['Error in simul: BiCGStab stagnated (Two consecutive iterates were the same.), in block' num2str(Block_Num,'%3d')])
end
end
ilu_setup.droptol = ilu_setup.droptol/10;
reduced = 0;
else
ya = ya + lambda*dx;
if is_dynamic
y(y_index_eq, it_) = ya;
else
y(y_index_eq) = ya';
end
end
end
else
if is_dynamic
error(['options_.stack_solve_algo = ' num2str(stack_solve_algo) ' not implemented'])
else
error(['options_.solve_algo = ' num2str(options_.solve_algo) ' not implemented'])
end
end
iter=iter+1;
max_resa = max_res;
end
end
if ~cvg
if verbose
if cutoff == 0
fprintf('Convergence not achieved in block %d, at time %d, after %d iterations.\n Increase "maxit".\n',Block_Num, it_,iter);
else
fprintf('Convergence not achieved in block %d, at time %d, after %d iterations.\n Increase "maxit" or set "cutoff=0" in model options.\n',Block_Num, it_,iter);
end
end
success = false;
return
end
end
success = true;
function y3n = dynendo(y, it_, M_)
if it_ > 1 && it_ < size(y, 2)
y3n = reshape(y(:, it_+(-1:1)), 3*M_.endo_nbr, 1);
elseif it_ > 1 % Purely backward model (in last period)
y3n = [ reshape(y(:, it_+(-1:0)), 2*M_.endo_nbr, 1); NaN(M_.endo_nbr, 1) ];
elseif it_ < size(y, 2) % Purely forward model (in first period)
y3n = [ NaN(M_.endo_nbr, 1); reshape(y(:, it_+(0:1)), 2*M_.endo_nbr, 1) ];
else % Static model
y3n = [ NaN(M_.endo_nbr, 1); y(:, it_); NaN(M_.endo_nbr, 1) ]
end
function r = lnsrch1_wrapper_one_boundary(ya, y_index, fh, Block_Num, y, x, params, steady_state, T, it_, M_)
y(y_index, it_) = ya;
[~, ~, r] = fh(dynendo(y, it_, M_), x(it_, :), params, steady_state, ...
M_.block_structure.block(Block_Num).g1_sparse_rowval, ...
M_.block_structure.block(Block_Num).g1_sparse_colval, ...
M_.block_structure.block(Block_Num).g1_sparse_colptr, T);
|