File: dr1_PI.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (454 lines) | stat: -rw-r--r-- 18,602 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
function [dr,info,M_,options_,oo_] = dr1_PI(dr,task,M_,options_,oo_)
% function [dr,info,M_,options_,oo_] = dr1_PI(dr,task,M_,options_,oo_)
% Computes the reduced form solution of a rational expectation model first
% order
% approximation of the Partial Information stochastic model solver around the deterministic steady state).
% Prepares System as
%        A0*E_t[y(t+1])+A1*y(t)=A2*y(t-1)+c+psi*eps(t)
% with z an exogenous variable process.
% and calls PI_Gensys.m solver
% based on Pearlman et al 1986 paper and derived from
% C.Sims' gensys linear solver.
% to return solution in format
%       [s(t)' x(t)' E_t x(t+1)']'=G1pi [s(t-1)' x(t-1)' x(t)]'+C+impact*eps(t),
%
% INPUTS
%   dr         [matlab structure] Decision rules for stochastic simulations.
%   task       [integer]          if task = 0 then dr1 computes decision rules.
%                                 if task = 1 then dr1 computes eigenvalues.
%   M_         [matlab structure] Definition of the model.
%   options_   [matlab structure] Global options.
%   oo_        [matlab structure] Results
%
% OUTPUTS
%   dr         [matlab structure] Decision rules for stochastic simulations.
%   info       [integer]          info=1: the model doesn't define current variables uniquely
%                                 info=2: problem in mjdgges.dll info(2) contains error code.
%                                 info=3: BK order condition not satisfied info(2) contains "distance"
%                                         absence of stable trajectory.
%                                 info=4: BK order condition not satisfied info(2) contains "distance"
%                                         indeterminacy.
%                                 info=5: BK rank condition not satisfied.
%   M_         [matlab structure]
%   options_   [matlab structure]
%   oo_        [matlab structure]
%
% ALGORITHM
%   ...
%
% SPECIAL REQUIREMENTS
%   none.
%

% Copyright © 1996-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

global lq_instruments;
info = 0;

options_ = set_default_option(options_,'qz_criterium',1.000001);

xlen = M_.maximum_endo_lead + M_.maximum_endo_lag + 1;

if options_.aim_solver
    options_.aim_solver = false;
    warning('You can not use AIM with Part Info solver. AIM ignored');
end
if (options_.order > 1)
    warning('You can not use order higher than 1 with Part Info solver. Order 1 assumed');
    options_.order =1;
end

% expanding system for Optimal Linear Regulator
if options_.ramsey_policy && ~options_.ACES_solver
    if isfield(M_,'orig_model')
        orig_model = M_.orig_model;
        M_.endo_nbr = orig_model.endo_nbr;
        M_.endo_names = orig_model.endo_names;
        M_.lead_lag_incidence = orig_model.lead_lag_incidence;
        M_.maximum_lead = orig_model.maximum_lead;
        M_.maximum_endo_lead = orig_model.maximum_endo_lead;
        M_.maximum_lag = orig_model.maximum_lag;
        M_.maximum_endo_lag = orig_model.maximum_endo_lag;
    end
    o_jacobian_flag = options_.jacobian_flag;
    options_.jacobian_flag = false;
    oo_.steady_state = dynare_solve('ramsey_static', oo_.steady_state, ...
                                    options_.ramsey.maxit, options_.solve_tolf, options_.solve_tolx, ...
                                    options_, M_, options_, oo_, it_);
    options_.jacobian_flag = o_jacobian_flag;
    [~,~,multbar] = ramsey_static(oo_.steady_state,M_,options_,oo_,it_);
    [jacobia_,M_] = ramsey_dynamic(oo_.steady_state,multbar,M_,options_,oo_,it_);
    klen = M_.maximum_lag + M_.maximum_lead + 1;
    dr.ys = [oo_.steady_state;zeros(M_.exo_nbr,1);multbar];
else
    klen = M_.maximum_lag + M_.maximum_lead + 1;
    iyv = M_.lead_lag_incidence';
    iyv = iyv(:);
    iyr0 = find(iyv) ;
    it_ = M_.maximum_lag + 1 ;

    if M_.exo_nbr == 0
        oo_.exo_steady_state = [] ;
    end


    if options_.ACES_solver
        sim_ruleids=[];
        tct_ruleids=[];
        if  size(M_.equations_tags,1)>0  % there are tagged equations, check if they are aceslq rules
            for teq=1:size(M_.equations_tags,1)
                if strcmp(M_.equations_tags(teq,3),'aceslq_sim_rule')
                    sim_ruleids=[sim_ruleids cell2mat(M_.equations_tags(teq,1))]
                end
                if strcmp(M_.equations_tags(teq,3),'aceslq_tct_rule')
                    tct_ruleids=[tct_ruleids cell2mat(M_.equations_tags(teq,1))]
                end
            end
        end
        lq_instruments.sim_ruleids=sim_ruleids;
        lq_instruments.tct_ruleids=tct_ruleids;
        %if isfield(lq_instruments,'xsopt_SS') %% changed by BY
        [~, lq_instruments.xsopt_SS,lq_instruments.lmopt_SS,s2,check] = opt_steady_get;%% changed by BY
        [~, DYN_Q] = QPsolve(lq_instruments, s2, check); %% added by BY
        z = repmat(lq_instruments.xsopt_SS,1,klen);
    else
        z = repmat(dr.ys,1,klen);
    end
    z = z(iyr0) ;
    [~,jacobia_] = feval([M_.fname '.dynamic'],z,[oo_.exo_simul ...
                        oo_.exo_det_simul], M_.params, dr.ys, it_);

    if options_.ACES_solver && (length(sim_ruleids)>0 || length(tct_ruleids)>0 )
        if length(sim_ruleids)>0
            sim_rule=jacobia_(sim_ruleids,:);
            % uses the subdirectory - BY
            save ([ACES_DirectoryName,'/',M_.fname '_ACESLQ_sim_rule.txt'], 'sim_rule', '-ascii', '-double', '-tabs');
        end
        if length(tct_ruleids)>0
            tct_rule=jacobia_(tct_ruleids,:);
            % uses the subdirectory - BY
            save ([ACES_DirectoryName,'/',M_.fname '_ACESLQ_tct_rule.txt'], 'tct_rule', '-ascii', '-double', '-tabs');
        end
        aces_ruleids=union(tct_ruleids,sim_ruleids);
        j_size=size(jacobia_,1);
        j_rows=1:j_size;
        j_rows = setxor(j_rows,aces_ruleids);
        jacobia_=jacobia_(j_rows ,:);
    end

end

if options_.debug
    save([M_.dname filesep 'Output' filesep M_.fname '_debug.mat'],'jacobia_')
end

dr=set_state_space(dr,M_);
kstate = dr.kstate;
nstatic = M_.nstatic;
nfwrd = M_.nfwrd;
nspred = M_.nspred;
nboth = M_.nboth;
order_var = dr.order_var;
nd = size(kstate,1);
nz = nnz(M_.lead_lag_incidence);

sdyn = M_.endo_nbr - nstatic;

k0 = M_.lead_lag_incidence(M_.maximum_endo_lag+1,order_var);
k1 = M_.lead_lag_incidence(find([1:klen] ~= M_.maximum_endo_lag+1),:);

if options_.aim_solver
    error('Anderson and Moore AIM solver is not compatible with Partial Information models');
end % end if useAIM and...

% If required, try PCL86 solver, that is, if not the check being
% performed only and if it is 1st order
% create sparse, extended jacobia AA:
nendo=M_.endo_nbr; % = size(aa,1)


if(options_.ACES_solver)
    %if ~isfield(lq_instruments,'names')
    if isfield(options_,'instruments')
        lq_instruments.names=options_.instruments;
    end
    %end
    if isfield(lq_instruments,'names')
        num_inst=size(lq_instruments.names,1);
        if ~isfield(lq_instruments,'inst_var_indices') && num_inst>0
            for i=1:num_inst
                i_tmp = strmatch(deblank(lq_instruments.names(i,:)), M_.endo_names,'exact');
                if isempty(i_tmp)
                    error ('One of the specified instrument variables does not exist') ;
                else
                    i_var(i) = i_tmp;
                end
            end
            lq_instruments.inst_var_indices=i_var;
        elseif size(lq_instruments.inst_var_indices)>0
            i_var=lq_instruments.inst_var_indices;
            if ~num_inst
                num_inst=size(lq_instruments.inst_var_indices);
            end
        else
            i_var=[];
            num_inst=0;
        end
        if size(i_var,2)>0 && size(i_var,2)==num_inst
            m_var=zeros(nendo,1);
            for i=1:nendo
                if isempty(find(i_var==i))
                    m_var(i)=i;
                end
            end
            m_var=nonzeros(m_var);
            lq_instruments.m_var=m_var;
        else
            error('WARNING: There are no instrumnets for ACES!');
        end
    else %if(options_.ACES_solver==1)
        error('WARNING: There are no instrumnets for ACES!');
    end
end

% find size xlen of the state vector Y and of A0, A1 and A2 transition matrices:
% it is the sum the all i variables's lag/lead representations,
% for each variable i representation being defined as:
% Max (i_lags-1,0)+ Max (i_leads-1,0)+1
% so that if variable x appears with 2 lags and 1 lead, and z
% with 2 lags and 3 leads, the size of the state space is:
% 1+0+1   +   1+2+1   =6
% e.g. E_t Y(t+1)=
%     E_t x(t)
%     E_t x(t+1)
%     E_t z(t)
%     E_t z(t+1)
%     E_t z(t+2)
%     E_t z(t+3)

% partition jacobian:
jlen=M_.nspred+M_.nsfwrd+M_.endo_nbr+M_.exo_nbr; % length of jacobian
PSI=-jacobia_(:, jlen-M_.exo_nbr+1:end); % exog
                                         % first transpose M_.lead_lag_incidence';
lead_lag=M_.lead_lag_incidence';
max_lead_lag=zeros(nendo,2); % lead/lag representation in Y for each endogenous variable i
if ( M_.maximum_lag <= 1) && (M_.maximum_lead <= 1)
    xlen=size(jacobia_,1);%nendo;
    AA0=zeros(xlen,xlen);  % empty A0
    AA2=AA0; % empty A2 and A3
    AA3=AA0;
    if xlen==nendo % && M_.maximum_lag <=1 && M_.maximum_lead <=1 % apply a shortcut
        AA1=jacobia_(:,nspred+1:nspred+nendo);
        if M_.maximum_lead ==1
            fnd = find(lead_lag(:,M_.maximum_lag+2));
            AA0(:, fnd)= jacobia_(:,nonzeros(lead_lag(:,M_.maximum_lag+2))); %forwd jacobian
        end
        if nspred>0 && M_.maximum_lag ==1
            fnd = find(lead_lag(:,1));
            AA2(:, fnd)= jacobia_(:,nonzeros(lead_lag(:,1))); %backward
        end
    elseif options_.ACES_solver % more endo vars than equations in jacobia_
    if nendo-xlen==num_inst
        PSI=[PSI;zeros(num_inst, M_.exo_nbr)];
        % AA1 contemporary
        AA_all=jacobia_(:,nspred+1:nspred+nendo);
        AA1=AA_all(:,lq_instruments.m_var); % endo without instruments
        lq_instruments.ij1=AA_all(:,lq_instruments.inst_var_indices); %  instruments only
        lq_instruments.B1=-[lq_instruments.ij1; eye(num_inst)];
        AA1=[AA1, zeros(xlen,num_inst); zeros(num_inst,xlen), eye(num_inst)];
        %PSI=[PSI; zeros(num_inst,M_.exo_nbr)];
        if M_.maximum_lead ==1 % AA0 forward looking
            AA_all(:,:)=0.0;
            fnd = find(lead_lag(:,M_.maximum_lag+2));
            AA_all(:, fnd)= jacobia_(:,nonzeros(lead_lag(:,M_.maximum_lag+2))); %forwd jacobian
            AA0=AA_all(:,lq_instruments.m_var);
            lq_instruments.ij0=AA_all(:,lq_instruments.inst_var_indices); %  instruments only
            lq_instruments.B0=[lq_instruments.ij0; eye(num_inst)];
            AA0=[AA0, zeros(xlen,num_inst); zeros(num_inst,xlen+num_inst)];
        end
        if nspred>0 && M_.maximum_lag ==1
            AA_all(:,:)=0.0;
            fnd = find(lead_lag(:,1));
            AA_all(:, fnd)= jacobia_(:,nonzeros(lead_lag(:,1))); %backward
            AA2=AA_all(:,lq_instruments.m_var);
            lq_instruments.ij2=AA_all(:,lq_instruments.inst_var_indices); %  instruments only
            lq_instruments.B2=[lq_instruments.ij2; eye(num_inst)];
            AA2=[AA2, lq_instruments.ij2 ; zeros(num_inst,xlen+num_inst)];
        end
    else
        error('ACES number of instruments does match');
    end
    else
        error('More than one lead or lag in the jabian');
    end
    if M_.orig_endo_nbr<nendo
        % findif there are any expecatations at time t
        exp_0= strmatch('AUX_EXPECT_LEAD_0_', M_.endo_names);
        num_exp_0=size(exp_0,1);
        if num_exp_0>0
            AA3(:,exp_0)=AA1(:,exp_0);
            XX0=zeros(nendo,num_exp_0);
            AA1(:,exp_0)=XX0(:,1:num_exp_0)
        end
    end
end
PSI=-[[zeros(xlen-nendo,M_.exo_nbr)];[jacobia_(:, jlen-M_.exo_nbr+1:end)]]; % exog
cc=0;
NX=M_.exo_nbr; % no of exogenous varexo shock variables.
NETA=nfwrd+nboth; % total no of exp. errors  set to no of forward looking equations
FL_RANK=rank(AA0); % nfwrd+nboth; % min total no of forward looking equations and vars

try
    % call [G1pi,C,impact,nmat,TT1,TT2,gev,eu]=PI_gensys(a0,a1,a2,c,PSI,NX,NETA,NO_FL_EQS)
    % System given as
    %        a0*E_t[y(t+1])+a1*y(t)=a2*y(t-1)+c+psi*eps(t)
    % with eps an exogenous variable process.
    % Returned system is
    %       [s(t)' x(t)' E_t x(t+1)']'=G1pi [s(t-1)' x(t-1)' x(t)]'+C+impact*eps(t),
    %  and (a) the matrix nmat satisfying   nmat*E_t z(t)+ E_t x(t+1)=0
    %      (b) matrices TT1, TT2  that relate y(t) to these states:
    %      y(t)=[TT1 TT2][s(t)' x(t)']'.

    if(options_.ACES_solver)
        if isfield(lq_instruments,'xsopt_SS')
            SSbar= diag([lq_instruments.xsopt_SS(m_var)]);% lq_instruments.xsopt_SS(lq_instruments.inst_var_indices)]);
            insSSbar=repmat(lq_instruments.xsopt_SS(lq_instruments.inst_var_indices)',nendo-num_inst,1);
        else
            SSbar= diag([dr.ys(m_var)]);%; dr.ys(lq_instruments.inst_var_indices)]);%(oo_.steady_state);
            insSSbar=repmat(dr.ys(lq_instruments.inst_var_indices)',nendo-num_inst,1);
        end
        SSbar=diag([diag(SSbar);diag(eye(num_inst))]);
        insSSbar=[insSSbar;diag(eye(num_inst))];

        AA0=AA0*SSbar;
        AA1=AA1*SSbar;
        AA2=AA2*SSbar;
        lq_instruments.B1=(lq_instruments.B1).*insSSbar;
    end
    %% for expectational models when complete
    if any(AA3)
        AA3=AA3*SSbar;
        [G1pi,CC,impact,nmat,TT1,TT2,gev,eu, DD, E2,E5, GAMMA, FL_RANK]=PI_gensysEXP(AA0,AA1,-AA2,AA3,cc,PSI,NX,NETA,FL_RANK, M_, options_);
    else
        [G1pi,CC,impact,nmat,TT1,TT2,gev,eu, DD, E2,E5, GAMMA, FL_RANK]=PI_gensys(AA0,AA1,-AA2,AA3,cc,PSI,NX,NETA,FL_RANK, M_, options_);
    end

    % reuse some of the bypassed code and tests that may be needed
    if (eu(1) ~= 1 || eu(2) ~= 1) && ~options_.ACES_solver
        info(1) = abs(eu(1)+eu(2));
        info(2) = 1.0e+8;
        %     return
    end

    dr.PI_ghx=G1pi;
    dr.PI_ghu=impact;
    dr.PI_TT1=TT1;
    dr.PI_TT2=TT2;
    dr.PI_nmat=nmat;
    dr.PI_CC=CC;
    dr.PI_gev=gev;
    dr.PI_eu=eu;
    dr.PI_FL_RANK=FL_RANK;
    %dr.ys=zeros(nendo); % zero steady state
    dr.ghx=G1pi;
    dr.ghu=impact;
    dr.eigval = eig(G1pi);
    dr.rank=FL_RANK;

    if options_.ACES_solver
        betap=options_.planner_discount;
        sigma_cov=M_.Sigma_e;
        % get W - BY
        W=(1-betap)*GAMMA'*DYN_Q*GAMMA;
        %W=[0]
        ACES.A=G1pi;
        ACES.C=impact; % (:,1);
        ACES.D=DD; %=impact (:,20);
        ACES.E2=E2;
        ACES.E5=E5;
        ACES.GAMMA=GAMMA;
        ACES_M=size(G1pi,2)-FL_RANK;
        ACES_NM=FL_RANK;
        ACES.M=ACES_M;
        ACES.NM=FL_RANK;
        % added by BY
        ACES.Q=DYN_Q;
        ACES.W=W;
        NY=nendo-num_inst;

        % save the followings in a subdirectory - BY
        save ([ACES_DirectoryName,'/',M_.fname '_ACESLQ_Matrices'], 'ACES');
        save ([ACES_DirectoryName,'/',M_.fname '_ACESLQ_GAMMA'], 'GAMMA');
        save ([ACES_DirectoryName,'/',M_.fname '_ACESLQ_A.txt'], 'G1pi', '-ascii', '-double', '-tabs');
        save ([ACES_DirectoryName,'/',M_.fname '_ACESLQ_C.txt'], 'impact','-ascii', '-double', '-tabs');
        save ([ACES_DirectoryName,'/',M_.fname '_ACESLQ_D.txt'], 'DD', '-ascii', '-double', '-tabs');
        save ([ACES_DirectoryName,'/',M_.fname '_ACESLQ_E2.txt'], 'E2', '-ascii', '-double', '-tabs');
        save ([ACES_DirectoryName,'/',M_.fname '_ACESLQ_E5.txt'], 'E5', '-ascii', '-double', '-tabs');
        save ([ACES_DirectoryName,'/',M_.fname '_ACESLQ_GAMMA.txt'], 'GAMMA', '-ascii', '-double', '-tabs');
        %save ([M_.fname '_ACESLQ_M.txt'], 'ACES_M', '-ascii', '-tabs');
        %save ([M_.fname '_ACESLQ_NM.txt'], 'ACES_NM', '-ascii', '-tabs');
        %save ([M_.fname '_ACESLQ_betap.txt'], 'betap', '-ascii', '-tabs');
        %save ([M_.fname '_ACESLQ_NI.txt'], 'num_inst', '-ascii', '-tabs');
        %save ([M_.fname '_ACESLQ_ND.txt'], 'NX', '-ascii', '-tabs');
        %save ([M_.fname '_ACESLQ_NY.txt'], 'NY', '-ascii', '-tabs');
        ACES_VARS=char(M_.endo_names);
        save ([ACES_DirectoryName,'/',M_.fname '_ACESLQ_VARS.txt'], 'ACES_VARS', '-ascii', '-tabs');
        % added by BY
        % save the char array ACES_VARS into .txt as it is
        fid = fopen(strcat(ACES_DirectoryName,'/',M_.fname,'_ACESLQ_VARnames.txt'),'wt');
        ACES_VARS =[ACES_VARS repmat(sprintf('\n'),size(ACES_VARS,1),1)];
        fwrite(fid,ACES_VARS.');
        fclose(fid);
        % save as integers
        fid = fopen(strcat(ACES_DirectoryName,'/',M_.fname,'_ACESLQ_M.txt'),'wt');
        fprintf(fid,'%d\n',ACES_M);
        fclose(fid);
        fid = fopen(strcat(ACES_DirectoryName,'/',M_.fname,'_ACESLQ_NM.txt'),'wt');
        fprintf(fid,'%d\n',ACES_NM);
        fclose(fid);
        fid = fopen(strcat(ACES_DirectoryName,'/',M_.fname,'_ACESLQ_betap.txt'),'wt');
        fprintf(fid,'%d\n',betap);
        fclose(fid);
        fid = fopen(strcat(ACES_DirectoryName,'/',M_.fname,'_ACESLQ_NI.txt'),'wt');
        fprintf(fid,'%d\n',num_inst);
        fclose(fid);
        fid = fopen(strcat(ACES_DirectoryName,'/',M_.fname,'_ACESLQ_ND.txt'),'wt');
        fprintf(fid,'%d\n',NX);
        fclose(fid);
        fid = fopen(strcat(ACES_DirectoryName,'/',M_.fname,'_ACESLQ_NY.txt'),'wt');
        fprintf(fid,'%d\n',NY);
        fclose(fid);
        save ([ACES_DirectoryName,'/',M_.fname '_ACESLQ_Q.txt'], 'DYN_Q', '-ascii', '-double', '-tabs');
        save ([ACES_DirectoryName,'/',M_.fname '_ACESLQ_W.txt'], 'W', '-ascii', '-double', '-tabs');
        save ([ACES_DirectoryName,'/',M_.fname '_ACESLQ_SIGMAE.txt'], 'sigma_cov', '-ascii', '-double', '-tabs');
    end

catch
    lerror=lasterror;
    if options_.ACES_solver
        disp('Problem with using Part Info ACES solver:');
        error(lerror.message);
    else
        disp('Problem with using Part Info solver');
        error(lerror.message);
    end
end

% TODO:
% if options_.loglinear == 1
% if exogenous deterministic variables