File: linear_approximation_accuracy.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (55 lines) | stat: -rw-r--r-- 1,777 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
function err = linear_approximation_accuracy(options_, M_, oo_)
% Evaluates the accuracy of the linear approximation when solving perfect foresight models, by
% reporting the max absolute value of the dynamic residuals.
%
% INPUTS
% - options_ [struct] contains various options.
% - M_       [struct] contains a description of the model.
% - oo_      [struct] contains results.
%
% OUTPUTS
% - err      [double] n*1 vector, evaluation of the accuracy (n is the number of equations).

% Copyright © 2015-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

lead_lag_incidence = M_.lead_lag_incidence;

ny = M_.endo_nbr;

maximum_lag = M_.maximum_lag;

periods = options_.periods;
steady_state = oo_.steady_state;
params = M_.params;
endo_simul = oo_.endo_simul;
exo_simul = oo_.exo_simul;

model_dynamic = str2func([M_.fname,'.dynamic']);

residuals = zeros(ny,periods);

Y = endo_simul(:);

i_cols = find(lead_lag_incidence')+(maximum_lag-1)*ny;

for it = (maximum_lag+1):(maximum_lag+periods)
    residuals(:,it-1) = model_dynamic(Y(i_cols), exo_simul, params, steady_state,it);
    i_cols = i_cols + ny;
end

err = transpose(max(abs(transpose(residuals))));