File: perfect_foresight_with_expectation_errors_setup.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (152 lines) | stat: -rw-r--r-- 7,660 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
function oo_=perfect_foresight_with_expectation_errors_setup(M_, options_, oo_)
% INPUTS
%   M_                  [structure] describing the model
%   options_            [structure] describing the options
%   oo_                 [structure] storing the results
%
% OUTPUTS
%   oo_                 [structure] storing the results

% Copyright © 2021-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

if ~isempty(M_.endo_histval)
    error('perfect_foresight_with_expectation_errors_setup: cannot be used in conjunction with histval')
end
if ~isempty(oo_.initval_series)
    error('perfect_foresight_with_expectation_errors_setup: cannot be used in conjunction with histval_file/initval_file')
end

periods = options_.periods;

%% Initialize informational structures
oo_.pfwee.terminal_info = NaN(M_.exo_nbr, periods); % 2nd dimension is informational time
oo_.pfwee.shocks_info = NaN(M_.exo_nbr, periods, periods); % 2nd dimension is real time, 3rd dimension is informational time

if exist(options_.datafile, 'file')
    if ~isempty(M_.det_shocks) || ~isempty(M_.learnt_shocks) || ~isempty(oo_.initial_steady_state) || ~isempty(M_.learnt_endval)
        warning('perfect_foresight_with_expectation_errors_setup: since you passed the datafile option, the contents of shocks and endval blocks will be ignored')
    end
    %% Read CSV file
    %% We can’t use readcell (only in MATLAB ≥ R2019a), so instead rely on csvread and manual hacks
    % Read numeric data, skipping first row and first column
    raw_csv = csvread(options_.datafile, 1, 1);
    if size(raw_csv, 1)-2 ~= periods
        error(['perfect_foresight_with_expectation_errors_setup: the number of rows in ' options_.datafile ' does not match the periods setting'])
    end
    % Read first line (exogenous variable names)
    fid = fopen(options_.datafile);
    csv_first_line = fgetl(fid);
    fclose(fid);
    exo_header_names = strsplit(csv_first_line, ',');
    exo_header_names = exo_header_names(2:end); % Remove first column
    if numel(exo_header_names) ~= size(raw_csv, 2)
        error(['perfect_foresight_with_expectation_errors_setup: first line malformed in ' options_.datafile])
    end

    %% Create and fill structures containing information sets
    for i = 1:size(raw_csv, 2)
        exo_id = strmatch(exo_header_names{i}, M_.exo_names, 'exact');
        period_id = raw_csv(1, i);
        % Ignore irrelevant periods when copying shocks information
        oo_.pfwee.shocks_info(exo_id, period_id:end, period_id) = raw_csv(1+period_id:end-1, i);
        oo_.pfwee.terminal_info(exo_id, period_id) = raw_csv(end, i);
    end
else
    %% No datafile option given, use the contents of shocks and endval blocks
    if isempty(M_.learnt_shocks) && isempty(M_.learnt_endval)
        warning('perfect_foresight_with_expectation_errors_setup: there is no shocks(learnt_in=...) or endval(learnt_in=...) block, and you did not pass the datafile option, so there is no point in using this command')
    end

    %% Initialize information set at period 1 using “bare” shocks and endval blocks (or initval if there is no endval)
    oo_.pfwee.terminal_info(:, 1) = oo_.exo_steady_state;
    oo_.pfwee.shocks_info(:, :, 1) = repmat(oo_.exo_steady_state, 1, periods);
    for i = 1:length(M_.det_shocks)
        prds = M_.det_shocks(i).periods;
        exo_id = M_.det_shocks(i).exo_id;
        v = M_.det_shocks(i).value;
        if ~M_.det_shocks(i).exo_det
            switch M_.det_shocks(i).type
                case 'level'
                    oo_.pfwee.shocks_info(exo_id, prds, 1) = v;
                case 'multiply_steady_state'
                    oo_.pfwee.shocks_info(exo_id, prds, 1) = oo_.exo_steady_state(exo_id) * v;
                case 'multiply_initial_steady_state'
                    if isempty(oo_.initial_exo_steady_state)
                        error('Option relative_to_initval of mshocks block cannot be used without an endval block')
                    end
                    oo_.pfwee.shocks_info(exo_id, prds, 1) = oo_.initial_exo_steady_state(exo_id) * v;
            end
        end
    end

    %% Construct information sets for subsequent informational periods
    for p = 2:periods
        oo_.pfwee.terminal_info(:, p) = oo_.pfwee.terminal_info(:, p-1);
        oo_.pfwee.shocks_info(:, :, p) = oo_.pfwee.shocks_info(:, :, p-1);
        if ~isempty(M_.learnt_endval)
            idx = find([M_.learnt_endval.learnt_in] == p);
            for i = 1:length(idx)
                j = idx(i);
                exo_id = M_.learnt_endval(j).exo_id;
                switch M_.learnt_endval(j).type
                    case 'level'
                        oo_.pfwee.terminal_info(exo_id, p) = M_.learnt_endval(j).value;
                    case 'add'
                        oo_.pfwee.terminal_info(exo_id, p) = oo_.pfwee.terminal_info(exo_id, p-1) + M_.learnt_endval(j).value;
                    case 'multiply'
                        oo_.pfwee.terminal_info(exo_id, p) = oo_.pfwee.terminal_info(exo_id, p-1) * M_.learnt_endval(j).value;
                    otherwise
                        error('Unknown type in M_.learnt_endval')
                end
                oo_.pfwee.shocks_info(exo_id, p:end, p) = oo_.pfwee.terminal_info(exo_id, p);
            end
        end
        if ~isempty(M_.learnt_shocks)
            idx = find([M_.learnt_shocks.learnt_in] == p);
            for i = 1:length(idx)
                j = idx(i);
                exo_id = M_.learnt_shocks(j).exo_id;
                prds = M_.learnt_shocks(j).periods;
                switch M_.learnt_shocks(j).type
                    case 'level'
                        oo_.pfwee.shocks_info(exo_id, prds, p) = M_.learnt_shocks(j).value;
                    case 'add'
                        oo_.pfwee.shocks_info(exo_id, prds, p) = oo_.pfwee.shocks_info(exo_id, prds, p-1) + M_.learnt_shocks(j).value;
                    case 'multiply'
                        oo_.pfwee.shocks_info(exo_id, prds, p) = oo_.pfwee.shocks_info(exo_id, prds, p-1) .* M_.learnt_shocks(j).value;
                    case 'multiply_steady_state'
                        oo_.pfwee.shocks_info(exo_id, prds, p) = oo_.pfwee.terminal_info(exo_id, p) * M_.learnt_shocks(j).value;
                    otherwise
                        error('Unknown type in M_.learnt_shocks')
                end
            end
        end
    end
end

% Build initial paths for endos and exos (only initial conditions are set, the rest is NaN)
if isempty(oo_.initial_steady_state)
    oo_.endo_simul = repmat(oo_.steady_state, 1, M_.maximum_lag+periods+M_.maximum_lead);
else
    oo_.endo_simul = [repmat(oo_.initial_steady_state, 1, M_.maximum_lag) repmat(oo_.steady_state, 1, periods+M_.maximum_lead)];
end
if isempty(oo_.initial_exo_steady_state)
    oo_.exo_simul = repmat(oo_.exo_steady_state', M_.maximum_lag+periods+M_.maximum_lead, 1);
else
    oo_.exo_simul = [repmat(oo_.initial_exo_steady_state', M_.maximum_lag, 1); repmat(oo_.exo_steady_state', periods+M_.maximum_lead, 1)];
end