1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
function [endogenousvariables, success, err, iter] = sim1(endogenousvariables, exogenousvariables, steadystate, M_, options_)
% [endogenousvariables, success, err, iter] = sim1(endogenousvariables, exogenousvariables, steadystate, M_, options_)
% Performs deterministic simulations with lead or lag of one period, using
% a basic Newton solver on sparse matrices.
% Uses perfect_foresight_problem DLL to construct the stacked problem.
%
% INPUTS
% - endogenousvariables [double] N*(T+M_.maximum_lag+M_.maximum_lead) array, paths for the endogenous variables (initial condition + initial guess + terminal condition).
% - exogenousvariables [double] T*M array, paths for the exogenous variables.
% - steadystate [double] N*1 array, steady state for the endogenous variables.
% - M_ [struct] contains a description of the model.
% - options_ [struct] contains various options.
% OUTPUTS
% - endogenousvariables [double] N*(T+M_.maximum_lag+M_.maximum_lead) array, paths for the endogenous variables (solution of the perfect foresight model).
% - success [logical] Whether a solution was found
% - err [double] ∞-norm of the residual
% - iter [integer] Number of iterations
% Copyright © 1996-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
verbose = options_.verbosity && ~options_.noprint;
ny = M_.endo_nbr;
periods = options_.periods;
vperiods = periods*ones(1,options_.simul.maxit);
if M_.maximum_lag > 0
y0 = endogenousvariables(:, M_.maximum_lag);
else
y0 = NaN(ny, 1);
end
if M_.maximum_lead > 0
yT = endogenousvariables(:, M_.maximum_lag+periods+1);
else
yT = NaN(ny, 1);
end
y = reshape(endogenousvariables(:, M_.maximum_lag+(1:periods)), ny*periods, 1);
stop = false;
if verbose
skipline()
printline(56)
disp('MODEL SIMULATION:')
skipline()
end
h1 = clock;
for iter = 1:options_.simul.maxit
h2 = clock;
[res, A] = perfect_foresight_problem(y, y0, yT, exogenousvariables, M_.params, steadystate, periods, M_, options_);
% A is the stacked Jacobian with period x equations alongs the rows and
% periods times variables (in declaration order) along the columns
if options_.debug && iter==1
[row,col]=find(A);
row=setdiff(1:periods*ny,row);
column=setdiff(1:periods*ny,col);
if ~isempty(row) || ~isempty(column)
fprintf('The stacked Jacobian is singular. The problem derives from:\n')
if ~isempty(row)
time_period=ceil(row/ny);
equation=row-ny*(time_period-1);
for eq_iter=1:length(equation)
fprintf('The derivative of equation %d at time %d is zero for all variables\n',equation(eq_iter),time_period(eq_iter));
end
end
if ~isempty(column)
time_period=ceil(column/ny);
variable=column-ny*(time_period-1);
for eq_iter=1:length(variable)
fprintf('The derivative with respect to variable %d at time %d is zero for all equations\n',variable(eq_iter),time_period(eq_iter));
end
end
end
check_Jacobian_for_singularity(full(A),M_.endo_names,options_);
end
if options_.endogenous_terminal_period && iter > 1
for it = 1:periods
if max(abs(res((it-1)*ny+(1:ny)))) < options_.dynatol.f/1e7
if it < periods
res = res(1:(it*ny));
A = A(1:(it*ny), 1:(it*ny));
yT = y(it*ny+(1:ny));
endogenousvariables(:, M_.maximum_lag+((it+1):periods)) = reshape(y(it*ny+(1:(ny*(periods-it)))), ny, periods-it);
y = y(1:(it*ny));
periods = it;
end
break
end
end
vperiods(iter) = periods;
end
err = max(abs(res));
if options_.debug
fprintf('\nLargest absolute residual at iteration %d: %10.3f\n',iter,err);
if any(isnan(res)) || any(isinf(res)) || any(any(isnan(endogenousvariables))) || any(any(isinf(endogenousvariables)))
fprintf('\nWARNING: NaN or Inf detected in the residuals or endogenous variables.\n');
end
skipline()
end
if verbose
fprintf('Iter: %d,\t err. = %g,\t time = %g\n', iter, err, etime(clock,h2));
end
if err < options_.dynatol.f
stop = true;
break
end
if options_.simul.robust_lin_solve
dy = -lin_solve_robust(A, res, verbose, options_);
else
dy = -lin_solve(A, res, verbose);
end
if any(isnan(dy)) || any(isinf(dy))
if verbose
display_critical_variables(reshape(dy,[ny periods])', M_, options_.noprint);
end
end
y = y + dy;
end
endogenousvariables(:, M_.maximum_lag+(1:periods)) = reshape(y, ny, periods);
if options_.endogenous_terminal_period
periods = options_.periods;
err = evaluate_max_dynamic_residual(str2func([M_.fname,'.dynamic']), endogenousvariables, exogenousvariables, M_.params, steadystate, periods, ny, M_.maximum_endo_lag, M_.lead_lag_incidence);
end
if stop
% initial or terminal observations may contain
% harmless NaN or Inf. We test only values computed above
if any(any(isnan(y))) || any(any(isinf(y)))
success = false; % NaN or Inf occurred
if verbose
skipline()
fprintf('Total time of simulation: %g.\n', etime(clock,h1))
disp('Simulation terminated with NaN or Inf in the residuals or endogenous variables.')
display_critical_variables(reshape(dy,[ny periods])', M_, options_.noprint);
disp('There is most likely something wrong with your model. Try model_diagnostics or another simulation method.')
printline(105)
end
else
if verbose
skipline();
fprintf('Total time of simulation: %g.\n', etime(clock,h1))
printline(56)
end
success = true; % Convergency obtained.
end
elseif ~stop
if verbose
skipline();
fprintf('Total time of simulation: %g.\n', etime(clock,h1))
disp('Maximum number of iterations is reached (modify option maxit).')
printline(62)
end
success = false; % more iterations are needed.
end
if verbose
skipline();
end
function x = lin_solve(A, b, verbose)
if norm(b) < sqrt(eps) % then x = 0 is a solution
x = 0;
return
end
x = A\b;
x(~isfinite(x)) = 0;
relres = norm(b - A*x) / norm(b);
if relres > 1e-6 && verbose
fprintf('WARNING : Failed to find a solution to the linear system.\n');
end
function [ x, flag, relres ] = lin_solve_robust(A, b ,verbose, options_)
if norm(b) < sqrt(eps) % then x = 0 is a solution
x = 0;
flag = 0;
relres = 0;
return
end
x = A\b;
x(~isfinite(x)) = 0;
[ x, flag, relres ] = bicgstab(A, b, [], [], [], [], x); % returns immediately if x is a solution
if flag == 0
return
end
if ~options_.noprint
disp( relres );
end
if verbose
fprintf('Initial bicgstab failed, trying alternative start point.\n');
end
old_x = x;
old_relres = relres;
[ x, flag, relres ] = bicgstab(A, b);
if flag == 0
return
end
if verbose
fprintf('Alternative start point also failed with bicgstab, trying gmres.\n');
end
if old_relres < relres
x = old_x;
end
[ x, flag, relres ] = gmres(A, b, [], [], [], [], [], x);
if flag == 0
return
end
if verbose
fprintf('Initial gmres failed, trying alternative start point.\n');
end
old_x = x;
old_relres = relres;
[ x, flag, relres ] = gmres(A, b);
if flag == 0
return
end
if verbose
fprintf('Alternative start point also failed with gmres, using the (SLOW) Moore-Penrose Pseudo-Inverse.\n');
end
if old_relres < relres
x = old_x;
relres = old_relres;
end
old_x = x;
old_relres = relres;
x = pinv(full(A)) * b;
relres = norm(b - A*x) / norm(b);
if old_relres < relres
x = old_x;
relres = old_relres;
end
flag = relres > 1e-6;
if flag ~= 0 && verbose
fprintf('WARNING : Failed to find a solution to the linear system\n');
end
function display_critical_variables(dyy, M_, noprint)
if noprint
return
end
if any(isnan(dyy))
indx = find(any(isnan(dyy)));
endo_names= M_.endo_names(indx);
disp('Last iteration provided NaN for the following variables:')
fprintf('%s, ', endo_names{:}),
fprintf('\n'),
end
if any(isinf(dyy))
indx = find(any(isinf(dyy)));
endo_names = M_.endo_names(indx);
disp('Last iteration diverged (Inf) for the following variables:')
fprintf('%s, ', endo_names{:}),
fprintf('\n'),
end
function check_Jacobian_for_singularity(jacob,endo_names,options_)
n_vars_jacob=size(jacob,2);
try
if (~isoctave && matlab_ver_less_than('9.12')) || isempty(options_.jacobian_tolerance)
rank_jacob = rank(jacob); %can sometimes fail
else
rank_jacob = rank(jacob,options_.jacobian_tolerance); %can sometimes fail
end
catch
rank_jacob=size(jacob,1);
end
if rank_jacob < size(jacob,1)
disp(['sim1: The Jacobian of the dynamic model is ' ...
'singular'])
disp(['sim1: there is ' num2str(n_vars_jacob-rank_jacob) ...
' collinear relationships between the variables and the equations'])
if (~isoctave && matlab_ver_less_than('9.12')) || isempty(options_.jacobian_tolerance)
ncol = null(jacob);
else
ncol = null(jacob,options_.jacobian_tolerance); %can sometimes fail
end
n_rel = size(ncol,2);
for i = 1:n_rel
if n_rel > 1
disp(['Relation ' int2str(i)])
end
disp('Collinear variables:')
for j=1:10
k = find(abs(ncol(:,i)) > 10^-j);
if max(abs(jacob(:,k)*ncol(k,i))) < 1e-6
break
end
end
fprintf('%s\n',endo_names{mod(k-1,length(endo_names))+1})
end
if (~isoctave && matlab_ver_less_than('9.12')) || isempty(options_.jacobian_tolerance)
neq = null(jacob'); %can sometimes fail
else
neq = null(jacob',options_.jacobian_tolerance); %can sometimes fail
end
n_rel = size(neq,2);
for i = 1:n_rel
if n_rel > 1
disp(['Relation ' int2str(i)])
end
disp('Collinear equations')
for j=1:10
k = find(abs(neq(:,i)) > 10^-j);
if max(abs(jacob(k,:)'*neq(k,i))) < 1e-6
break
end
end
equation=mod(k-1,length(endo_names))+1;
period=ceil(k/length(endo_names));
for ii=1:length(equation)
fprintf('Equation %5u, period %5u\n',equation(ii),period(ii))
end
end
end
|